全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

去除紫花苜蓿叶片高丰度蛋白的方法及其应用

DOI: 10.11686/cyxb2015044, PP. 131-138

Keywords: 高丰度蛋白,核酮糖-l,5-二磷酸羧化/加氧酶,聚乙二醇,紫花苜蓿,蛋白质组学

Full-Text   Cite this paper   Add to My Lib

Abstract:

紫花苜蓿叶片中大量的高丰度蛋白(核酮糖-l,5-二磷酸羧化/加氧酶,Rubisco)干扰了蛋白质的动态分辨率,严重影响蛋白质组学研究中功能蛋白的检测与鉴定。为了探究去除高丰度蛋白的适宜方法,本研究利用Mg/NP-40与聚乙二醇(PEG)预分离紫花苜蓿叶片蛋白,通过双向凝胶电泳法比较了不同浓度PEG对叶片高丰度蛋白的分离情况。电泳图谱显示0,15%,17.5%,20%PEG处理的蛋白质中分别可以检测到(335±17),(417±3),(445±7),(459±11)个蛋白质点,0,15%,17.5%处理组间差异显著(P<0.05),17.5%和20%PEG处理组间没有差异(P<0.05)。然而,17.5%PEG能够检测到更多的差异蛋白质点,证明其更能有效沉淀高丰度蛋白,便于检测被Rubisco遮盖的蛋白质点。将该方法应用于紫花苜蓿叶片响应低温胁迫的蛋白质组学研究中检验其应用效果,与三氯乙酸/丙酮法提取的全蛋白相比,去除高丰度蛋白后鉴定出8个新的蛋白质差异点,证明该方法适用于实际的蛋白质组学研究。可见,Mg/NP-40与17.5%PEG法是最适宜去除紫花苜蓿叶片高丰度蛋白的方法。

References

[1]  Andrew W C, Hiren J J, Joshua L H. Managing the green proteomes for the next decade of plant research. Frontiers in Plant Science, 2013, (4): 501.
[2]  Jenny R, Jean-Francois H, Michael E W. Proteomics and low-temperature studies: bridging the gap between gene expression and metabolism. Physiologia Plantarum, 2006, 126: 97-109.
[3]  Kang J M, Zhang T J, Wang M Y, et al . Research process in the quantitative trait loci (QTL) and genomic selection of alfalfa. Acta Prataculturae Sinica, 2014, 23(5): 304-312.
[4]  Giavalisco P, Nordhoff E, Kreitler T, et al . Proteome analysis of Arabidopsis thaliana by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation-time of flight mass. Proteomics, 2005, 5: 1902-1913.
[5]  Yan S P, Zhang Q Y, Tang Z C, et al . Comparative proteomic analysis provides new insights into chilling stress responses in rice. Molecular & Cellular, 2006, 5: 484-496.
[6]  Cellar N A, Kuppannan K, Langhorst M L, et al . Cross species applicability of abundant protein depletion columns for ribulose-1,5-bisphosphate carboxylase/oxygenase. Journal of Chromatography, 2008, 861: 29-39.
[7]  Cho J H, Wang H, Cho M H, et al . The effect of DTT in protein preparations for proteomic analysis: Removal of a highly abundant plant enzyme,ribulose bisphosphate arboxylase/oxygenase. Journal of Plant Biology, 2008, 51: 297-301.
[8]  Li H B, Kang Z S. Study of a rapid method for depletion of highly abundant protein Rubisco enzyme from wheat ( T. aestivum ) leaf for proteome analysis. Journal of Northwest A&F University (Natural Science Edition), 2011, 39(6): 223-228.
[9]  Krishnan H B, Natarajan S S. A rapid method for depletion of Rubisco from soybean ( Glycine max ) leaf for proteomic analysis of lower abundance proteins.Phytochem, 2009, 70: 1958-1964.
[10]  Atha D H, Ingham K C. Mechanism of precipitation of proteins by polyethylene glycols. The Journal of Biology Chemistry, 1981, 256: 12108-12117.
[11]  Juckes I R. Fractionation of proteins and viruses with polyethylene glycol. Biochimica et Biophysica Acta, 1971, 229: 535-546.
[12]  Kim S T, Cho K S, Jang Y S, et al . Two-dimensional electrophoretic analysis of rice proteins by polyethylene glycol fractionation for protein arrays. Electrophoresis, 2001, 22: 2103-2109. 3.0.CO;2-W target="_blank">
[13]  Xi J H, Wang X, Li S Y, et al . Polyethylene glycol fractionation improved detection of low-abundant proteins by two-dimensional electrophoresis analysis of plant proteome. Phytochemistry, 2006, 67: 2341-2348.
[14]  Sun T K, Kyu S C, Yu S J, et al . Two-dimensional electrophoresis analysis of rice proteins by polyethylene glycol fractionation for protein arrays. Electrophoresis, 2001, 22: 2103-2109. 3.0.CO;2-W target="_blank">
[15]  Lee D G, Ahsan N, Lee S H, et al . An approach to identify cold-induced low-abundant proteins in rice leaf. Comptes Rendus Biologies, 2007, 330: 215-225.
[16]  Zhong L, Ma C M, Liang Y Z, et al . Depletion of Rubisco from cucumis melon leaf and optimization of two-dimensional electrophoresis for proteome. Plant Physiology Journal, 2012, 48(3): 303-309.
[17]  Gärg A, Weiss W, Dunn M J. Current two-dimensional electrophoresis technology for proteomics. Proteomics, 2004, 4: 3665-3685.
[18]  Lilley K S, Razzaq A, Dupree P. Two-dimensional gel electrophoresis: recent advances in sample preparation, detection and quantitation. Current Opinion in Chemical Biology, 2002, 6: 46-50.
[19]  Shaw M M, Riederer B M. Sample preparation for two-dimensional gel electrophoresis. Proteomics, 2003, 3: 1408-1417.
[20]  Li H M, Shao M, Tan H Y, et al . Establishment and evaluation of the method for removing the high-abundance proteins in cerebrospinal fluid proteomics. Journal of Modern Clinical Medical Bioengineering, 2007, 13(2): 94-96.
[21]  Wang Y, Cui W T, Yang M F, et al . An approach to detect the low-abundant proteins in rice leaf sheath. Acta Prataculturae Sinica, 2011, 20(3): 192-197.
[22]  Tai F J, Li Y, Chen L, et al . Analysis of two-dimensional electrophoresis for the expressed proteins in cotton cotyledons under cold stress. Journal of Huazhong Normal University (Natural Science edition), 2008, 42(2): 262-266.
[23]  Ning S J, Zhao M, Xiang X L, et al .Proteomics of rice and grain at late growth stage under different nitrogen fertilization levels. Chinese Journal of Applied Ecology, 2010, 21(10): 2573-2579.
[24]  Iker A, Gemma M, Gorka E, et al . Plant physiology and proteomics reveals the leaf response to drought in alfalfa ( Medicago sativa L.). Journal of Experimental Botany, 2010, 62(1): 111-123.
[25]  Zhang S, Feng L H, Jiang H, et al . Biochemical and proteomic analyses reveal that populus cathayana males and females have different metabolic activities under chilling stress. Journal of Proteome Research, 2012, 11: 5815-5826.
[26]  Granier F. Extraction of plant proteins for two-dimensional electrophoresis. Electrophoresis, 1988, 9: 712-718.
[27]  Tsugita A, Kamo M. 2-D electrophoresis of plant proteins. Methods in Molecular Biology, 1999, 112: 95-97.
[28]  Schatz O, Oft M, Dascher C, et al . Interaction of the HIV-1 Rev cofactor eukaryotic initiation factor 5A with ribosomal protein L5. Proceedings of National Academy of Sciences, 1998, 95: 1607-1612.
[29]  Jao D L E, Chen K Y. Tandem affinity purification revealed the hypusine-dependent binding of eukaryotic initiation factor 5A to the translating 80S ribosomal complex. Journal of Cell Biochemistry, 2006, 97: 583-598.
[30]  Thompson J E, Hopkins M T, Taylor C, et al . Regulation of senescence by eukaryotic translation initiation factor 5A: implications for plant growth and development. Trends Plant Science, 2004, 9: 174-179.
[31]  Kim M D, Kim Y H, Kwon S Y, et al . Overexpression of 2-cysteine peroxiredoxin enhances tolerance to methyl viologen-mediated oxidative stress and high temperature in potato plants. Plant Physiology and Biochemistry, 2011, 49: 891-897.
[32]  Green B R, Durnford D G. The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47: 685-714.
[33]  康俊梅, 张铁军, 王梦颖, 等. 紫花苜蓿QTL与全基因组选择研究进展及其应用. 草业学报, 2014, 23(5): 304-312.
[34]  李红兵, 康振生. 小麦叶片蛋白质组分析中高丰度蛋白Rubisco酶的快速去除方法研究. 西北农林科技大学学报(自然科学版), 2011, 39(6): 223-228.
[35]  钟俐, 马成梅, 梁永增, 等. 甜瓜叶片中Rubisco的去除及双向电泳体系的优化. 植物生理学报, 2012, 48(3): 303-309.
[36]  李焕敏, 邵明, 谭红愉, 等. 脑脊液蛋白质组学高丰度蛋白去除方法的建立与评价. 现代临床医学生物工程学杂志, 2007, 13(2): 94-96.
[37]  王莹, 崔为同, 杨明峰, 等. 一种有效检测水稻叶鞘低丰度蛋白的方法. 草业学报, 2011, 20(3): 192-197.
[38]  邰付菊, 李扬, 陈良, 等. 低温胁迫下棉花子叶蛋白质差异表达的双向电泳分. 华中师范大学学报(自然科学版), 2008, 42(2): 262-266.
[39]  宁书菊, 赵敏, 向小亮, 等. 不同氮素水平下水稻生育后期叶片和籽粒的蛋白质组学. 应用生态学报, 2010, 21(10): 2573-2579.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133