全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

新疆伊犁地区草地植被地上生物量遥感反演

DOI: 10.11686/cyxb2014478, PP. 25-34

Keywords: 草地植被,地理信息系统,地上生物量,遥感反演

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文以伊犁地区146个草地样地调查数据为基础,结合遥感及气象数据,进行草地植被地上生物量与NDVI、EVI、海拔、年均降水、年均气温、积温、干燥度、湿润指数等因子的回归分析。并通过各因子对地上生物量影响权重参数分析和加权融合,运用ArcGIS软件,反演分析了新疆伊犁地区草地植被地上生物量的空间分布特征。结果表明,新疆伊犁地区草地平均产草量约为704.96kg/hm2,与20世纪80年代全国草地调查数据相比,产草量有所下降。草地植被地上生物量与各项因子具有较好的相关性,反演结果与伊犁地区的地形、地貌、气候特征基本吻合,反映了伊犁地区草地植被的空间分布特征。地上生物量反演结果得到验证,预测值与实测值之间相关系数(R2)为0.8532;均方根误差(RMSE)为216.559kg/hm2,偏离度为22.92%,可以为新疆伊犁地区草地资源合理利用与评价提供参考。

References

[1]  Zhao L C, Liu R T, Yang R H, et al . Study on the remote sensing classification of grassland based on the topographic factors. Pratacultural Science, 2006, 23(12): 26-30.
[2]  Zhang N. Scale issues in ecology: concepts of scale and analysis. Acta Ecologica Sinica, 2006, 26(7): 2340-2355.
[3]  An S Z. Resources of grass family germplasm in Yili prefecture of Xinjiang and their evaluation. Grassland and Turf, 2001, (2): 15-19.
[4]  方精云, 刘国华, 徐嵩龄. 我国森林植被的生物量和净生产量. 生态学报, 1996, 16(5): 479-508.
[5]  冯宗伟, 王效科, 吴刚. 中国森林生态系统的生物量和生产力[M]. 北京: 科学出版社, 1999: 1-6.
[6]  中华人民共和国农业部畜牧兽医司. 中国草地资源数据[M]. 北京: 中国农业出版社, 1994.
[7]  方精云, 刘国华, 徐嵩龄. 中国陆地生态系统的碳库[M]. 北京: 中国环境科学出版社, 1996.
[8]  朴世龙, 方精云, 贺金生, 等. 中国草地植被生物量及其空间分布格局. 植物生态学报, 2004, 28(4): 491-498.
[9]  邓蕾, 上官周平. 陕西省天然草地生物量空间分布格局及其影响因素. 草地学报, 2012, 20(5): 825-835.
[10]  李建龙, 蒋平, 梁天刚. 我国草地遥感科学发展的轨迹、内涵及展望. 中国草地, 1998, (3): 53-56.
[11]  彭少麟, 郭志华, 王伯荪. RS和GIS在植被生态学中的应用及其前景. 生态学杂志, 1999, 18(5): 52-64.
[12]  王建伟, 陈功. 草地植被指数及生物量的遥感估测. 云南农业大学学报, 2006, 21(3): 372-375.
[13]  张艳楠, 牛建明, 张庆, 等. 植被指数在典型草原生物量遥感估测应用中的问题探讨. 草业学报, 2012, 21(1): 229-238. 浏览
[14]  皇甫江云, 毛凤显, 卢欣石. 中国西南地区的草地资源分析. 草业学报, 2012, 21(1): 75-82. 浏览
[15]  范月君, 侯向阳, 石红霄, 等. 气候变暖对草地生态系统碳循环的影响. 草业学报, 2012, 21(3): 294-302. 浏览
[16]  刘纪远, 徐新良, 邵全琴. 近30年来青海三江源地区草地退化的时空特征. 地理学报, 2008, 63(4): 364-376.
[17]  王军邦, 刘纪远, 邵全琴, 等. 基于遥感-过程耦合模型的1988~2004年青海三江源区净初级生产力模拟. 植物生态学报, 2009, 33(2): 254-269.
[18]  周磊, 辛晓平, 李刚, 等. 高光谱遥感在草原监测中的应用. 草业科学, 2009, 26(4): 20-27.
[19]  张凯, 郭铌, 王润元, 等. 甘南草地地上生物量的高光谱遥感估算研究. 草业科学, 2009, 26(11): 44-50.
[20]  除多, 普布次仁, 德吉央宗, 等. 西藏高原中部草地地上生物量遥感估算方法. 山地学报, 2013, 31(11): 664-671.
[21]  钱育蓉, 杨峰, 于炯, 等. 新疆阜康荒漠植被指数特征和时空过程分析. 草业学报, 2013, 22(3): 25-32. 浏览
[22]  黄敬峰, 桑长青, 冯振武, 等. 天山北坡中段天然草场牧草产量遥感动态监测模式. 自然资源学报, 1993, 8(1): 10-17.
[23]  梁天刚, 陈全功. 新疆阜康县草地资源产量动态监测模型的研究. 遥感技术与应用, 1996, (1): 27-32.
[24]  赵万宇, 李建龙, 陈亚宁. 天山北坡区域生态承载力与可持续发展. 生态学报, 2008, 28(9): 4363-4371.
[25]  钱育蓉, 杨峰, 李建龙, 等. 基于3S的新疆阜康典型草地产草量及草畜平衡分析. 草业科学, 2013, 30(9): 1330-1337.
[26]  杨峰, 钱育蓉, 李建龙, 等. 天山北坡典型荒漠草地退化特征及其成因. 自然资源学报, 2011, 26(8): 1306-1314.
[27]  赵万羽. 天山典型荒漠草地退化特征、机理与恢复重建技术研究[D]. 南京: 南京大学, 2006: 25.
[28]  杨红飞, 刚成诚, 穆少杰, 等. 近10年新疆草地生态系统净初级生产力及其时空格局变化研究. 草业学报, 2014, 23(3): 39-50. 浏览
[29]  梁燕, 魏玉荣, 刘爱军. 基于MODIS- NDVI的草地遥感在内蒙古天然草原植被状况中的应用. 内蒙古草业, 2009, 21(9): 40-44.
[30]  赵连春, 刘荣堂, 杨予海, 等. 基于地形因子的草地遥感分类方法的研究. 草业科学, 2006, 23(12): 26-30.
[31]  张娜. 生态学中的尺度问题: 内涵与分析方法. 生态学报, 2006, 26(7): 2340-2355.
[32]  安沙舟. 新疆伊犁地区禾本科植物种质资源及其评价. 草原与草坪, 2001, (2): 15-19.
[33]  Peng S L, Guo Z H, Wang B S. Applications of RS and GIS on terrestrial vegetation ecology. Chinese Journal of Ecology, 1999, 18(5): 52-64.
[34]  Lefsky M A, Harding D, Cohen W B, et al . Surface lidarremote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA. Remote Sensing of Environment, 1998, 67(1): 83-90.
[35]  Wang J W, Chen G. Vegetation index and biomass estimation for grassland. Journal of Yunnan Agricultural University, 2006, 21(3): 372-375.
[36]  Beeri O, Phillips R, Hendrickson J, et al . Estimating forage quantity and quality using aerial hyperspectral imagery for northern mixed-grass prairie. Remote Sensing of Environment, 2007, 110(2): 216-225.
[37]  Cho M A, Skidmore A, Corsi F, et al . Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. International Journal of Applied Earth Observations and Geoinformation, 2007, 9(4): 414-424.
[38]  Zhang Y N, Niu J M, Zhang Q, et al . A discussion on applications of vegetation index for estimating aboveground biomass of typical steppe. Acta Prataculturae Sinica, 2012, 21(1): 229-238.
[39]  Huangfu J Y, Mao F X, Lu X S. Analysis of grassland resources in southwest China. Acta Prataculturae Sinica, 2012, 21(1): 75-82.
[40]  Fan Y J, Hou X Y, Shi H X, et al . Effect of carbon cycling in grassland ecosystems on climate warming. Acta Prataculturae Sinica, 2012, 21(3): 294-302.
[41]  Liu J Y, Xu X L, Shao Q Q. The spatial and temporal characteristics of grassland degradation in the three-river headwaters region in Qinghai Province. Acta Geographica Sinica, 2008, 63(4): 364-376.
[42]  Wang J B, Liu J Y, Shao Q Q, et al . Spatial-temporal patterns of net primary productivity for 1988-2004 based on GLOPEM-CEVSAmodel in the “three-river headwaters” region of Qinghai Province, China. Chinese Journal of Plant Ecology, 2009, 33(2): 254-269.
[43]  Xu B, Yang X, Tao W, et al . MODIS-based remote sensing monitoring of grass production in China. International Journal of Remote Sensing, 2008, 29: 5313-5327.
[44]  Jin Y, Yang X, Qiu J, et al . Remote sensing-based biomass estimation and its spatio-temporal variations in temperate grassland, Northern China. Remote Sensing, 2014, 6: 1496-1513.
[45]  Song W, Jia H, Liu S, et al . A Remote Sensing Based Forage Biomass Yield Inversion Model of Alpine-cold Meadow during Grass-withering Period in Three-river Watersarea[C]. Beijing: IOP Publishing, 2014.
[46]  Zhao F, Xu B, Yang X, et al . Remote sensing estimates of grassland aboveground biomass based on MODIS net primary productivity (NPP): A case study in the Xilingolgrassland of northern China. Remote Sensing, 2014, 6: 5368-5386.
[47]  Xu D, Guo X, Li Z, et al . Measuring the dead component of mixed grassland with landsat imagery. Remote Sensing of Environment, 2014, 142: 33-43.
[48]  Zhou L, Xin X P, Li G, et al . Application progress on hyperspectral remote sensing in grassland monitoring. Pratacultural Science, 2009, 26(4): 20-27.
[49]  Fang J Y, Liu G H, Xu S L. Biomass and net production of forest vegetation in China. Acta Ecologica Sinica, 1996, 16(5): 479-508.
[50]  Feng Z W, Wang X K, Wu G. The Biomass and Productivity of Forest Ecosystem China[M]. Beijing: Science Press, 1999: 1-6.
[51]  The Ministry of Agriculture Animal Husbandry and Veterinary Department of The People’s Republic of China. Rangeland Resources of China[M]. Beijing: China Agriculture Press, 1994.
[52]  Ni J. Carbon storage in terrestrial ecosystems of China: estimates at different spatial resolutions and their responses to climate change. Climatic Change, 2001, 49(3): 339-358.
[53]  Ni J. Carbon storage in grasslands of China. Journal of Arid Environments, 2002, 50(2): 205-218.
[54]  Fang J Y, Liu G H, Xu S L. Carbon Pool of Ecosystem Chinese[M]. Beijing: China Environment Science Press, 1996.
[55]  Ni J. Forage yield-based carbon storage in grasslands of China. Climatic Change, 2004, 67(2-3): 237-246.
[56]  Ni J. Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China. Plant Ecology, 2004, 174(2): 217-234.
[57]  Pu S L, Fang J Y, He J S, et al . Spatial distribution of grassland biomass in China. Acta Phytoecologica Sinica, 2004, 28(4): 491-498.
[58]  Deng L, Shangguan Z P. Distribution of natural grassland biomass and its relationship with influencing factors in Shanxi. Acta Agrestia Sinica, 2012, 20(5): 825-835.
[59]  Li J L, Jiang P, Liang T G. The developing processes, contents and prospects of grassland remote sensing science in China. Grassland of China, 1998, (3): 53-56.
[60]  Zhang K, Guo N, Wang R Y, et al . Hyperspectral remote sensing estimation models for aboveground fresh biomass in Gannan grassland. Pratacultural Science, 2009, 26(11): 44-50.
[61]  Chu D, Pubu C R, Deji Y Z, et al . Above-ground biomass estimate methods of grassland in the central Tibet. Journal of Mountain Science, 2013, 31(11): 664-671.
[62]  Casas A, Riaño D, Ustin S, et al . Estimation of water-related biochemical and biophysical vegetation properties using multitemporal airborne hyperspectral data and its comparison to MODIS spectral response. Remote Sensing of Environment, 2014, 148: 28-41.
[63]  Qian Y R, Yang F, Yu J, et al . Vegetation index feature and spatial-temporal process analysis of desert grassland in the Fukang area of Xinjiang. Acta Prataculturae Sinica, 2013, 22(3): 25-32.
[64]  Huang J F, Sang C Q, Feng Z W. The remote sensing dynamic monitoring model of the grass yield of natural grassland in the middle section of the Tianshan. Journal of Natural Resources, 1993, 8(1): 10-17.
[65]  Liang T G, Chen Q G. Research on the dynamic monitoring model of grassland resources yield in Fukang county of Xinjiang. Remote Sensing Technology and Application, 1996, (1): 27-32.
[66]  Zhao W Y, Li J L, Chen Y N. Changes of eco-capacity and ecological sustainability in the north Tianshan Mountains region: taking Fukang county as a case of study. Acta Ecologica Sinica, 2008, 28(9): 4363-4371.
[67]  Qian Y R, Yang F, Li J L, et al . Yield and animal-feed balance of typical grassland in Xinjiang Fukang using 3S techniques. Pratacultural Science, 2013, 30(9): 1330-1337.
[68]  Yang F, Qian Y R, Li J L, et al . Degradation characteristics and causes of desert grassland in the northern Tianshan Mountains. Journal of Natural Resources, 2011, 26(8): 1306-1314.
[69]  Zhao W Y. Tianshan Mountains Desert Grassland Degradation Characteristics of Typical Mechanism and Recovery and Reconstruction Technology Research[D]. Nanjing: Nanjing University, 2006: 25.
[70]  Yang H F, Gang C C, Mu S J, et al . Analysis of the spatio-temporal variation in net primary productivity of grassland during the past 10 years in Xinjiang. Acta Prataculturae Sinica, 2014, 23(3): 39-50.
[71]  Liang Y, Wei Y R, Liu A J. Based on MODIS-NDVI of the application of remote sensing in natural grassland of Inner Mongolia grassland vegetation conditions. Inner Mongolia Prataculture, 2009, 21(9): 40-44.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133