全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

氮输入对土壤甲烷产生、氧化和传输过程的影响及其机制

DOI: 10.11686/cyxb2014313, PP. 204-212

Keywords: 机制,甲烷产生,甲烷氧化,微生物,氮输入

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着人为氮输入的增加,外源氮成为影响土壤甲烷产生、氧化和传输过程的重要因素。土壤甲烷排放受氮素有效性的调节,氮输入会改变土壤初始环境和甲烷排放规律,最终影响甲烷排放量。综述了氮输入对土壤甲烷产生、氧化和传输过程的影响及机制。研究表明,1)氮输入对甲烷排放通量的影响存在促进、抑制和不显著3种情况,这主要是甲烷产生、氧化和传输过程的变化引起的;2)氮输入对甲烷产生过程的影响受产甲烷底物和产甲烷微生物活性的控制,氮输入通过增加土壤有机碳的含量为甲烷产生提供了丰富的底物,同时底物理化性质和植被覆盖度的变化使得这种影响复杂化,氮输入既可促进又可抑制产甲烷菌的活性,并且这种作用受氮形态的影响;3)氮输入对甲烷氧化过程的影响主要是通过刺激或抑制甲烷氧化菌的活性实现的,氮形态的不同也使得这种变化更为复杂;4)氮输入对甲烷传输过程的影响主要受植物通气组织的数量以及传输效率的控制,并且在不同生态系统这种控制作用差异较大。综上所述,氮输入对土壤甲烷产生、氧化和传输过程的影响及机制具有明显的复杂性和不确定性,今后研究中应综合考虑氮输入对甲烷排放关键过程的影响,并侧重于探讨氮输入对相关微生物群落结构、丰度和活性的影响,同时注重对各个生态系统的协同研究,确定氮输入影响下各个生态系统对全球甲烷排放的贡献率。

References

[1]  Dlugokencky E J, Walter B P, Masarie K A, et al . Measurements of an anomalous global methane increase during 1998. Geophysical Research Letters, 2001, 28(3): 499-502.
[2]  Smith K R, Desai M A, Rogers J V, et al . Joint CO 2 and CH 4 accountability for global warming. Proceedings of the National Academy of Sciences, 2013, 110(31): 2865-2874.
[3]  Hergoualc’h K A, Verchot L V. Changes in soil CH 4 fluxes from the conversion of tropical peat swamp forests: a meta-analysis. Journal of Integrative Environmental Sciences, 2012, 9(2): 93-101.
[4]  Bodelier P L E, Laanbroek H J. Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiology Ecology, 2004, 47(3): 265-277.
[5]  Thauer R K, Kaster A K, Seedorf H, et al . Methanogenic archaea: ecologically relevant differences in energy conservation. Nature Reviews Microbiology, 2008, 6(8): 579-591.
[6]  Bhullar G S, Iravani M, Edwards P J, et al . Methane transport and emissions from soil as affected by water table and vascular plants. BMC Ecology, 2013, 13(1): 1-9.
[7]  Bosse U, Frenzel P. Activity and distribution of methane-oxidizing bacteria in flooded rice soil microcosms and in rice plants ( Oryza sativa ). Applied and Environmental Microbiology, 1997, 63(4): 1199-1207.
[8]  Sun W L, Sun Z G, Sun W G, et al . The methane oxidation potential of soils intidal marshes of the Yellow River Estuary and its responses to import of organic matter. Acta Prataculturae Sinica, 2014, 23(1): 104-112.
[9]  Ding W X, Cai Z C. Methane emission from mires and its influencing factors. Scientia Geographica Sinica, 2002, 22(5): 619-625.
[10]  Galloway J N, Townsend A R, Erisman J W, et al .Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 2008, 320: 889-892.
[11]  Zhang L H, Song C C, Zheng X H, et al . Effects of nitrogen on the ecosystem respiration, CH 4 and N 2 O emissions to the atmosphere from the freshwater marshes in northeast China. Environmental Geology, 2007, 52(3): 529-539.
[12]  Lu M, Zhou X, Luo Y, et al . Minor stimulation of soil carbon storage by nitrogen addition: A meta-analysis. Agriculture, Ecosystems & Environment, 2011, 140(1): 234-244.
[13]  Mosier A R, Halvorson A D, Reule C A, et al . Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. Journal of Environmental Quality, 2006, 35(4): 1584-1598.
[14]  Aronson E L, Helliker B R. Methane flux in non-wetland soils in response to nitrogen addition: a meta-analysis. Ecology, 2010, 91(11): 3242-3251.
[15]  Liu L, Greaver T L. A review of nitrogen enrichment effects on three biogenic GHGs: the CO 2 sink may be largely offset by stimulated N 2 O and CH 4 emission. Ecology Letters, 2009, 12(10): 1103-1117.
[16]  Krause K, Niklaus P A, Schleppi P. Soil-atmosphere fluxes of the greenhouse gases CO 2 , CH 4 and N 2 O in a mountain spruce forest subjected to long-term N addition and to tree girdling. Agricultural and Forest Meteorology, 2013, 181: 61-68.
[17]  Zhang L H, Song C C, Nkrumah P N. Responses of ecosystem carbon dioxide exchange to nitrogen addition in a freshwater marshland in Sanjiang Plain, Northeast China. Environmental Pollution, 2013, 180: 55-62.
[18]  Zanatta J A, Bayer C, Vieira F C B, et al . Nitrous oxide and methane fluxes in South Brazilian Gleysol as affected by nitrogen fertilizers. Revista Brasileira de Ciência do Solo, 2010, 34(5): 1653-1665.
[19]  Hang J F, Tong C, Liu Z X, et al . Plant-mediated methane transport and emission from a Spartina alterniflora marsh. Chinese Bulletin of Botany, 2011, 46(5): 534-543.
[20]  Arkebauer T J, Chanton J P, Verma S B, et al . Field measurements of internal pressurization in Phragmites australis (Poaceae) and implications for regulation of methane emissions in amid latitude prairie wetland. American Journal of Botany, 2001, 88(4): 653-658.
[21]  Aulakh M S, Wassmann R, Rennenberg H, et al . Pattern and amount of aerenchyma aelate to variable methane transport capacity of different rice cultivars. Plant Biology, 2000, 2(2): 182-194.
[22]  Kim J N, Verma S B, Billesbach D P. Seasonal variation in methane emission from a temperate Phragmites -dominated marsh: effect of growth stage and plant-mediated transport. Global Change Biology, 1999, 5(4): 433-440.
[23]  Bubier J L. The relationship of vegetation to methane emission and hydrochemical gradients in northern peatlands. Journal of Ecology, 1995, 83: 403-420.
[24]  Yao Z S, Zheng X H, Dong H B, et al . A 3-year record of N 2 O and CH 4 emissions from a sandy loam paddy during rice seasons as affected by different nitrogen application rates. Agriculture, Ecosystems & Environment, 2012, 152: 1-9.
[25]  Zhang L, Jacob D J, Knipping E M, et al . Nitrogen deposition to the United States: distribution, sources, and processes. Atmospheric Chemistry and Physics Discussions, 2012, 12(1): 241-282.
[26]  Whalen S C, Reeburgh W S. Effect of nitrogen fertilization on atmospheric methane oxidation in boreal forest soils. Chemosphere-Global Change Science, 2000, 2(2): 151-155.
[27]  Gulledge J, Hrywna Y, Cavanaugh C, et al . Effects of long-term nitrogen fertilization on the uptake kinetics of atmospheric methane in temperate forest soils. FEMS Microbiology Ecology, 2004, 49(3): 389-400.
[28]  Liou R M, Huang S N, Lin C W. Methane emission from fields with differences in nitrogen fertilizers and rice varieties in Taiwan paddy soils. Chemosphere, 2003, 50(2): 237-246.
[29]  Jang I, Lee S, Zoh K D, et al . Methane concentrations and methanotrophic community structure influence the response of soil methane oxidation to nitrogen content in a temperate forest. Soil Biology and Biochemistry, 2011, 43(3): 620-627.
[30]  Liu D Y, Ding W X, Yuan J J, et al . Substrate and/or substrate-driven changes in the abundance of methanogenic archaea cause seasonal variation of methane production potential in species-specific freshwater wetlands. Applied Microbiology and Biotechnology, 2014, 98(10): 4711-4721.
[31]  Nykänen H, Vasander H, Huttunen J T, et al . Effect of experimental nitrogen load on methane and nitrous oxide fluxes on ombrotrophic boreal peatland. Plant and Soil, 2002, 242(1): 147-155.
[32]  Zhang L H, Song C C, Wang D X, et al . Effects of exogenous nitrogen on freshwater marsh plant growth and N 2 O fluxes in Sanjiang Plain, Northeast China. Atmospheric Environment, 2007, 41(5): 1080-1090.
[33]  Darby F A, Turner R E. Effects of eutrophication on salt marsh root and rhizome biomass accumulation. Marine Ecology Progress Series, 2008, 363: 63-70.
[34]  Kong Y H, Nagano H, Kátai J, et al . CO 2 , N 2 O and CH 4 production/consumption potentials of soils under different land-use types in central Japan and eastern Hungary. Soil Science and Plant Nutrition, 2013, 59(3): 455-462.
[35]  Silvola J, Saarnio S, Foot J, et al . Effects of elevated CO 2 and N deposition on CH 4 emissions from European mires. Global Biogeochemical Cycles, 2003, 17(2):1-37.
[36]  Wu L Q, Ma K, Li Q, et al . Composition of archaeal community in a paddy field as affected by rice cultivar and N fertilizer. Microbial Ecology, 2009, 58(4): 819-826.
[37]  Cao C C, Qi Y C, Dong Y S, et al . Effects of nitrogen deposition on critical fractions of soil organic in terrestrial ecosystems.Acta Prataculturae Sinica, 2014, 23(2):323-332.
[38]  Treseder K K. Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies.Ecology Letters, 2008, 11(10): 1111-1120.
[39]  Pregitzer K S, Burton A J, Zak D R, et al . Simulated chronic nitrogen deposition increases carbon storage in Northern Temperate forests. Global Change Biology, 2008, 14(1): 142-153.
[40]  Granberg G, Sundh I, Svensson B H, et al . Effects of temperature, and nitrogen and sulfur deposition, on methane emission from a boreal mire. Ecology, 2001, 82(7): 1982-1998.
[41]  Patra A K, Yu Z T. Combinations of nitrate, saponin, and sulfate additively reduce methane production by rumen cultures in vitro while not adversely affecting feed digestion, fermentation or microbial communities. Bioresource Technology, 2014, 155: 129-135.
[42]  Fang H J, Cheng S L, Yu G R, et al . Microbial mechanisms responsible for the effects of atmospheric nitrogen deposition on methane uptake and nitrous oxide emission in forest soils: a review. Acta Ecologica Sinica, 2014, 34(17): 4799-4806.
[43]  Bodelier P L E, Roslev P, Henckel T, et al . Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature, 2000, 403: 421-424.
[44]  Templer P H, Pinder R W, Goodale C L. Effects of nitrogen deposition on greenhouse-gas fluxes for forests and grasslands of North America. Frontiers in Ecology and the Environment, 2012, 10(10): 547-553.
[45]  Siciliano A, Ruggiero C, De Rosa S. A new integrated treatment for the reduction of organic and nitrogen loads in methanogenic landfill leachates. Process Safety and Environmental Protection, 2013, 91(4): 311-320.
[46]  Cai Z C, Xing G X, Yan X Y, et al . Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management. Plant and Soil, 1997, 196(1): 7-14.
[47]  Banger K, Tian H, Lu C. Do nitrogen fertilizers stimulate or inhibit methane emissions from rice fields. Global Change Biology, 2012, 18(10): 3259-3267.
[48]  Ding W X, Cai Z C. Effect of nitrogen fertilizers on methane oxidation in soils by methanotrophs. Chinese Journal of Eco-Agriculture, 2003, 11(2): 50-53.
[49]  King G M, Schnell S. Effects of ammonium and non-ammonium salt additions on methane oxidation by Methylosinus trichosporium OB3b and Maine forest soils. Applied and Environmental Microbiology, 1998, 64(1): 253-257.
[50]  Crill P M, Martikainen P J, Nykanen H, et al . Temperature and N fertilization effects on methane oxidation in a drained peatland soil. Soil Biology and Biochemistry, 1994, 26(10): 1331-1339.
[51]  Van der Nat F, De Brouwer J, Middelburg J J, et al . Spatial distribution and inhibition by ammonium of methane oxidation in intertidal freshwater marshes. Applied and Environmental Microbiology, 1997, 63(12): 4734-4740.
[52]  Zhu G, Jetten M S M, Kuschk P, et al . Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems. Applied Microbiology and Biotechnology, 2010, 86(4): 1043-1055.
[53]  Veillette M, Viens P, Ramirez A A, et al . Effect of ammonium concentration on microbial population and performance of a biofilter treating air polluted with methane. Chemical Engineering Journal, 2011, 171(3): 1114-1123.
[54]  Ettwig K F, Butler M K, Le Paslier D, et al . Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 2010, 464: 543-548.
[55]  He P J, Yang N, Fang W J, et al . Interaction and independence on methane oxidation of landfill cover soil among three impact factors: water, oxygen and ammonium. Frontiers of Environmental Science & Engineering in China, 2011, 5(2): 175-185.
[56]  Xu X, Inubushi K. Responses of ethylene and methane consumption to temperature and pH in temperate volcanic forest soils. European Journal of Soil Science, 2009, 60(4): 489-498.
[57]  Aronson E L, Dubinsky E A, Helliker B R. Effects of nitrogen addition on soil microbial diversity and methane cycling capacity depend on drainage conditions in a pine forest soil. Soil Biology and Biochemistry, 2013, 62: 119-128.
[58]  Bodelier P L E, Hahn A P, Arth I R, et al . Effects of ammonium-based fertilization on microbial processes involved in methane emission from soils planted with rice. Biogeochemistry, 2000, 51(3): 225-257.
[59]  Krüger M, Eller G, Conrad R, et al . Seasonal variation in pathways of CH 4 production and in CH 4 oxidation in rice fields determined by stable carbon isotopes and specific inhibitors. Global Change Biology, 2002, 8(3): 265-280.
[60]  Semrau J D, DiSpirito A A, Yoon S. Methanotrophs and copper. FEMS Microbiology Reviews, 2010, 34(4): 496-531.
[61]  Siljanen H M P, Saari A, Krause S, et al . Hydrology is reflected in the functioning and community composition of methanotrophs in the littoral wetland of a boreal lake. FEMS Microbiology Ecology, 2011, 75(3): 430-445.
[62]  Mohanty S R, Bodelier P L E, Floris V, et al . Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Applied and Environmental Microbiology, 2006, 72(2): 1346-1354.
[63]  Cébron A, Bodrossy L, Stralis-Pavese N, et al . Nutrient amendments in soil DNA stable isotope probing experiments reduce the observed methanotroph diversity. Applied and Environmental Microbiology, 2007, 73(3): 798-807.
[64]  Krause S, Meima-Franke M, Hefting M M, et al . Spatial patterns of methanotrophic communities along a hydrological gradient in a riparian wetland. FEMS Microbiology Ecology, 2013, 86(1): 59-70.
[65]  Stapleton L M, Crout N M J, Säwström C, et al . Microbial carbon dynamics in nitrogen amended Arctic tundra soil: measurement and model testing. Soil Biology and Biochemistry, 2005, 37(11): 2088-2098.
[66]  Gupta V, Smemo K A, Yavitt J B, et al . Stable isotopes reveal widespread anaerobic methane oxidation across latitude and peatland type. Environmental Science & Technology, 2013, 47(15): 8273-8279.
[67]  Shukla P N, Pandey K D, Mishra V K. Environmental determinants of soil methane oxidation and methanotrophs. Critical Reviews in Environmental Science and Technology, 2013, 43(18): 1945-2011.
[68]  Sindern A, Ricken T, Bluhm J, et al . Bacterial methane oxidation in landfill cover layers-a coupled FE multiphase description. PAMM, 2013, 13(1): 193-194.
[69]  Dubey S K. Spatio-kinetic variation of methane oxidizing bacteria in paddy soil at mid-tillering: effect of N-fertilizers. Nutrient Cycling in Agroecosystems, 2003, 65(1): 53-59.
[70]  Yang N, Lü F, He P, et al . Response of methanotrophs and methane oxidation on ammonium application in landfill soils. Applied Microbiology and Biotechnology, 2011, 92(5): 1073-1082.
[71]  Chan A S K, Parkin T B. Methane oxidation and production activity in soils from natural and agricultural ecosystems. Journal of Environmental Quality, 2001, 30(6): 1896-1903.
[72]  Bykova S, Boeckx P, Kravchenko I, et al . Response of CH 4 oxidation and methanotrophic diversity to N H 4 + and CH 4 mixing ratios. Biology and Fertility of Soils, 2007, 43(3): 341-348.
[73]  Segarra K E A, Comerford C, Slaughter J, et al . Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater and brackish wetland sediments. Geochimica et Cosmochimica Acta, 2013, 115: 15-30.
[74]  Kravchenko I K. Methane oxidation in boreal peat soils treated with various nitrogen compounds. Plant and Soil, 2002, 242(1): 157-162.
[75]  Duan X N, Wang X K, Cheng L, et al . Methane emission from aquatic vegetation zones of Wuliangsu Lake, Inner Mongolia. Environmental Science, 2007, 28(3): 456-459.
[76]  Whiting G J, Chanton J P. Control of the diurnal pattern of methane emission from emergent aquatic macrophytes by gas transport mechanisms. Aquatic Botany, 1996, 54(2-3): 237-253.
[77]  Saarnio S, Silvola J. Effects of increased CO 2 and N on CH 4 efflux from a boreal mire: a growth chamber experiment. Oecologia, 1999, 119(3): 349-356.
[78]  Jia Z J, Cai Z C. Effects of rice plants on methane emission from paddy fields. Chinese Journal of Applied Ecology, 2003, 14(11): 2049-2053.
[79]  Garnet K N, Megonigal J P, Litchfield C, et al . Physiological control of leaf methane emission from wetland plants. Aquatic Botany, 2005, 81(2): 141-155.
[80]  Tong C, Wang W Q, Huang J F, et al . Invasive alien plants increase CH 4 emissions from a subtropical tidal estuarine wetland. Biogeochemistry, 2012, 111(1-3): 677-693.
[81]  Joabsson A, Christensen T R. Methane emissions from wetlands and their relationship with vascular plants: an Arctic example. Global Change Biology, 2001, 7(8): 919-932.
[82]  Adam Langley J, Mozdzer T J, Shepard K A, et al . Tidal marsh plant responses to elevated CO 2 , nitrogen fertilization, and sea level rise. Global Change Biology, 2013, 19(5): 1495-1503.
[83]  Ström L, Ekberg A, Mastepanov M, et al . The effect of vascular plants on carbon turnover and methane emissions from a tundra wetland. Global Change Biology, 2003, 9(8): 1185-1192.
[84]  孙万龙, 孙志高, 孙文广, 等. 黄河口潮滩湿地土壤CH 4 氧化潜力及其对有机物输入的响应. 草业学报, 2014, 23(1): 104-112. 浏览
[85]  丁维新, 蔡祖聪. 沼泽甲烷排放及其主要影响因素. 地理科学, 2002, 22(5): 619-625.
[86]  曹丛丛, 齐玉春, 董云社, 等. 氮沉降对陆地生态系统关键有机碳组分的影响. 草业学报, 2014, 23(2): 323-332.
[87]  方华军, 程淑兰, 于贵瑞, 等. 大气氮沉降对森林土壤甲烷吸收和氧化亚氮排放的影响及其微生物学机制. 生态学报, 2014, 34(17): 4799-4806.
[88]  丁维新, 蔡祖聪. 氮肥对土壤氧化甲烷的影响研究. 中国生态农业学报, 2003, 11(2): 50-53.
[89]  段晓男, 王效科, 陈琳, 等. 乌梁素海湖泊湿地植物区甲烷排放规律. 环境科学, 2007, 28(3): 456-459.
[90]  贾仲君, 蔡祖聪. 水稻植株对稻田甲烷排放的影响. 应用生态学报, 2003, 14(11): 2049-2053.
[91]  黄佳芳, 仝川, 刘泽雄, 等. 沼泽湿地互花米草植物体传输与排放甲烷特征. 植物学报, 2011, 46(5): 534-543.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133