Smith S E, Read D J. Mycorrhizal Symbiosis (3rd edition)[M]. New York: Elsevier, 2008.
[2]
Smith S E, Smith F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annual Review of Plant Biology, 2011, 62: 227-250.
[3]
Stevens C J, Dise N B, Mountford J O, et al . Impact of nitrogen deposition on the species richness of grasslands. Science, 2004, 303: 1876-1879.
[4]
Suding K N, Collins S L, Gough L, et al . Functional- and abundance-based mechanisms explain diversity loss due to N fertilization. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(12): 4387-4392.
[5]
Bai Y F, Wu J G, Clark C M, et al . Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia grasslands. Global Change Biology, 2010, 16(1): 358-372.
[6]
Yang H, Jiang L, Li L, et al . Diversity-dependent stability under mowing and nutrient addition: evidence from a 7-year grassland experiment. Ecology Letters, 2012, 15(6): 619-626.
[7]
He D, Li X L, Wan L Q, et al . Influence of urea application on aboveground biomass and important value of the species in the degraded grassland. Acta Prataculturae Sinica, 2009, 18(3): 154-158.
[8]
Brundrett M. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil, 2009, 320(1-2): 37-77.
[9]
Johnson N C, Angelard C, Sanders I R, et al . Predicting community and ecosystem outcomes of mycorrhizal responses to global change. Ecology Letters, 2013, 16(Suppl 1): 140-153.
[10]
Lin S S, Sun X W, Wang X J, et al . Mycorrhizal studies and their application prospects in China. Acta Prataculturae Sinica, 2013, 22(5): 310-325.
[11]
Hetrick B A D, Kitt D G, Wilson G T. Mycorrhizal dependence and growth habit of warm-season and cool-season tallgrass prairie plants. Canadian Journal of Botany, 1988, 66(7): 1376-1380.
[12]
Wilson G W T, Hartnett D C. Interspecific variation in plant responses to mycorrhizal colonization in tallgrass prairie. American Journal of Botany, 1998, 85(12): 1732-1738.
[13]
Hartnett D C, Wilson G W T. Mycorrhizae influence plant community structure and diversity in tallgrass prairie. Ecology, 1999, 80(4): 1187-1195.
[14]
Bai Y F, Han X G, Wu J G, et al . Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 2004, 431: 181-184.
[15]
Tilman D, Reich P B, Knops J M H. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature, 2006, 441: 629-632.
[16]
Kiers E T, Duhamel M, Beesetty Y, et al . Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 2011, 333: 880-882.
[17]
van der Heijden M G A, Bardgett R D, van Straalen N M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 2008, 11(6): 296-310.
[18]
Li X L, George E, Marschner H. Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant and Soil, 1991, 136(1): 41-48.
[19]
Zhang F S, Shen J B, Feng G. Rhizosphere Ecology: Processes & Management[M]. Beijing: China Agricultural University Press, 2009.
[20]
Cavagnaro T R, Dickson S, Smith F A. Arbuscular mycorrhizas modify plant responses to soil zinc addition. Plant and Soil, 2010, 329(1-2): 307-313.
[21]
Zhu Y G, Smith F A, Smith S E. Phosphorus efficiencies and their effects on Zn, Cu, and Mn nutrition of different barley ( Hordeum vulgare ) cultivars grown in sand culture. Australian Journal of Agricultural Research, 2002, 53(2): 211-216.
[22]
Marschner H, Dell B. Nutrient uptake in mycorrhizai symbiosis. Plant and Soil, 1994, 159(1): 89-102.
[23]
Yao Q, Li X L, Feng G, et al . Mobilization of sparingly soluble inorganic phosphates by the external mycelium of an abuscular mycorrhizal fungus. Plant and Soil, 2001, 230(2): 279-285.
[24]
Li X L, George E, Marschner H. Phosphorus depletion and pH decrease at the root-soil and hyphae-soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytologist, 1991, 119(3): 397-404.
[25]
Garg N, Chandel S. Arbuscular mycorrhizal networks: process and functions. In: Lichtfouse E, Hamelin M, Navarrete M, et al . Sustainable Agriculture Volume 2[M]. Netherlands: Springer, 2011: 907-930.
[26]
Vos C, Claerhout S, Mkandawire R, et al . Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant and Soil, 2012, 354(1): 335-345.
[27]
Li Y J, Liu Z L, Hou H Y, et al . Arbuscular mycorrhizal fungi-enhanced resistance against Phytophthora sojae infection on soybean leaves is mediated by a network involving hydrogen peroxide, jasmonic acid, and the metabolism of carbon and nitrogen. Acta Physiologiae Plantarum, 2013, 35(12): 3465-3475.
[28]
Babikova Z, Gilbert L, Bruce T J A, et al . Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecology Letters, 2013, 16(7): 835-843.
[29]
Duhamel M, Pel R, Ooms A, et al . Do fungivores trigger the transfer of protective metabolites from host plants to arbuscular mycorrhizal hyphae. Ecology, 2013, 94(9): 2019-2029.
[30]
Elsharkawy M, Shimizu M, Takahashi H, et al . The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae induce systemic resistance against Cucumber mosaic virus in cucumber plants. Plant and Soil, 2012, 361(1-2): 397-409.
[31]
Jeffries P, Gianinazzi S, Perotto S, et al . The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and Fertility of Soils, 2003, 37(1): 1-16.
[32]
Wu Q S, Yuan F Y, Fei Y J, et al . Effects of arbuscular mycorrhizal fungi on aggregate stability, GRSP, and carbohydrates of white clover. Acta Prataculturae Sinica, 2014, 23(4): 269-275.
[33]
Bever J D, Schultz P A, Pringle A, et al . Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why. Bioscience, 2001, 51(11): 923-931.
[34]
Chaudhary V B, Bowker M A, O’Dell T E, et al . Untangling the biological contributions to soil stability in semiarid shrublands. Ecological Applications, 2009, 19(1): 110-122.
[35]
Wilson G W T, Rice C W, Rillig M C, et al . Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecology Letters, 2009, 12(5): 452-461.
Hetrick B A D, Wilson G W T, Hartnett D C. Relationship between mycorrhizal dependence and competitive ability of two tallgrass prairie grasses. Canadian Journal of Botany, 1989, 67(9): 2608-2615.
[38]
Hetrick B A D, Hartnett D C, Wilson G W T, et al . Effects of mycorrhizae, phosphorus availability, and plant-density on yield relationships among competing tallgrass prairie grasses. Canadian Journal of Botany, 1994, 72(2): 168-176.
[39]
Zobel M, Moora M. Interspecific competition and arbuscular mycorrhiza: Importance for the coexistence of two calcareous grassland species. Folia Geobotanica, 1995, 30(2): 223-230.
[40]
Moora M, Zobel M. Effect of arbuscular mycorrhiza on inter- and intraspecific competition of two grassland species. Oecologia, 1996, 108(1): 79-84.
[41]
West H M. Influence of arbuscular mycorrhizal infection on competition between Holcus lanatus and Dactylis glomerata . Journal of Ecology, 1996, 84(3): 429-438.
[42]
Bever J D, Morton J B, Antonovics J, et al . Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. Journal of Ecology, 1996, 84(1): 71-82.
[43]
Hart M M, Reader R J, Klironomos J N. Plant coexistence mediated by arbuscular mycorrhizal fungi. Trends in Ecology & Evolution, 2003, 18(8): 418-423.
[44]
Vandenkoornhuyse P, Ridgway K P, Watson I J, et al . Co-existing grass species have distinctive arbuscular mycorrhizal communities. Molecular Ecology, 2003, 12(11): 3085-3095.
[45]
Robinson D, Fitter A. The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. Journal of Experimental Botany, 1999, 50: 9-13.
[46]
Tilman D. Species richness of experimental productivity gradients—how important is colonization limitation. Ecology, 1993, 74(8): 2179-2191.
[47]
MacArthur R H, Wilson E O. The Theory of Island Biogeography[M]. Princeton: Princeton University Press, 1967.
[48]
Turnbull L A, Crawley M J, Rees M. Are plant populations seed-limited? A review of seed sowing experiments. Oikos, 2000, 88(2): 225-238.
[49]
Voets L, de la Providencia I, Fernandez K, et al . Extraradical mycelium network of arbuscular mycorrhizal fungi allows fast colonization of seedlings under in vitro conditions. Mycorrhiza, 2009, 19(5): 347-356.
[50]
Simard S W, Beiler K J, Bingham M A, et al . Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biology Reviews, 2012, 26(1): 39-60.
[51]
Nakano-Hylander A, Olsson P. Carbon allocation in mycelia of arbuscular mycorrhizal fungi during colonisation of plant seedlings. Soil Biology and Biochemistry, 2007, 39(7): 1450-1458.
[52]
Janouskova M, Rydlova J, Puschel D, et al . Extraradical mycelium of arbuscular mycorrhizal fungi radiating from large plants depresses the growth of nearby seedlings in a nutrient deficient substrate. Mycorrhiza, 2011, 21(7): 641-650.
[53]
Francis R, Read D J. Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Canadian Journal of Botany, 1995, 73(S1): 1301-1309.
[54]
van der Heijden M G A, Klironomos J N, Ursic M, et al . Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 1998, 396: 69-72.
[55]
Vogelsang K M, Reynolds H L, Bever J D. Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytologist, 2006, 172(3): 554-562.
[56]
Wagg C, Jansa J, Schmid B, et al . Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecology Letters, 2011, 14(10): 1001-1009.
[57]
Egerton-Warburton L M, Querejeta J I, Allen M F. Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. Journal of Experimental Botany, 2007, 58(6): 1473-1483.
[58]
Birhane E, Sterck F, Fetene M, et al . Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of frankincense seedlings under pulsed water availability conditions. Oecologia, 2012, 169(4): 895-904.
[59]
Querejeta J, Egerton-Warburton L, Prieto I, et al . Changes in soil hyphal abundance and viability can alter the patterns of hydraulic redistribution by plant roots. Plant and Soil, 2012, 355(1): 63-73.
[60]
Porcel R, Aroca R, Ruiz-Lozano J. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development, 2012, 32(1): 181-200.
[61]
Giri B, Mukerji K. Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza, 2004, 14(5): 307-312.
[62]
Diouf D, Duponnois R, Ba A T, et al . Symbiosis of Acacia auriculiformis and Acacia mangium with mycorrhizal fungi and Bradyrhizobium spp. improves salt tolerance in greenhouse conditions. Functional Plant Biology, 2005, 32(12): 1143-1152.
[63]
Estrada B, Barea J, Aroca R, et al . A native Glomus intraradices strain from a Mediterranean saline area exhibits salt tolerance and enhanced symbiotic efficiency with maize plants under salt stress conditions. Plant and Soil, 2013, 366(1-2): 333-349.
[64]
Rabie G H. Induction of fungal disease resistance in Vicia faba by dual inoculation with Rhizobium leguminosarum and vesicular-arbuscular mycorrhizal fungi. Mycopathologia, 1998, 141(3): 159-166.
[65]
Moora M, Zobel M. Can arbuscular mycorrhiza change the effect of root competition between conspecific plants of different ages. Canadian Journal of Botany, 1998, 76(4): 613-619.
[66]
Sudova R, Vosatka M. Effects of inoculation with native arbuscular mycorrhizal fungi on clonal growth of Potentilla reptans and Fragaria moschata (Rosaceae). Plant and Soil, 2008, 308(1): 55-67.
[67]
Urcelay C, Diaz S. The mycorrhizal dependence of subordinates determines the effect of arbuscular mycorrhizal fungi on plant diversity. Ecology Letters, 2003, 6(5): 388-391.
[68]
Hiiesalu I, Pärtel M, Davison J, et al . Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. New Phytologist, 2014, 203(1): 233-244.
[69]
O’Connor P J, Smith S E, Smith F A. Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland. New Phytologist, 2002, 154(1): 209-218.
[70]
van der Heijden M G A, Streitwolf-Engel R, Riedl R, et al . The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytologist, 2006, 172(4): 739-752.
[71]
Tilman D, Lehman C L, Thomson K T. Plant diversity and ecosystem productivity: theoretical considerations. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(5): 1857-1861.
[72]
Klironomos J N, McCune J, Hart M, et al . The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecology Letters, 2000, 3(2): 137-141.
[73]
Collins C D, Foster B L. Community-level consequences of mycorrhizae depend on phosphorus availability. Ecology, 2009, 90(9): 2567-2576.
[74]
van der Heijden M G A, Verkade S, de Bruin S J. Mycorrhizal fungi reduce the negative effects of nitrogen enrichment on plant community structure in dune grassland. Global Change Biology, 2008, 14(11): 2626-2635.
[75]
Yang G W, Liu N, Lu W J, et al . The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influences plant community productivity and ecosystem stability. Journal of Ecology, 2014, 102(4): 1072-1082.
[76]
Treseder K K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO 2 in field studies. New Phytologist, 2004, 164(2): 347-355.
[77]
Babikova Z, Johnson D, Bruce T, et al . Underground allies: how and why do mycelial networks help plants defend themselves. Bioessays, 2014, 36(1): 21-26.
[78]
Jung S, Martinez-Medina A, Lopez-Raez J, et al . Mycorrhiza-Induced resistance and priming of plant defenses. Journal of Chemical Ecology, 2012, 38(6): 651-664.
[79]
van der Heijden M G A. Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems. Ecology, 2010, 91(4): 1163-1171.
[80]
Hetrick B A D, Wilson G W T, Cox T S. Mycorrhizal dependence of modern wheat-varieties, landraces, and ancestors. Canadian Journal of Botany, 1992, 70(10): 2032-2040.
[81]
Plenchette C, Fortin J A, Furlan V. Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. Plant and Soil, 1983, 70(2): 211-217.
[82]
Tawaraya K. Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Science and Plant Nutrition, 2003, 49(5): 655-668.
[83]
Grman E. Plant species differ in their ability to reduce allocation to non-beneficial arbuscular mycorrhizal fungi. Ecology, 2012, 93(4): 711-718.
[84]
Jakobsen I, Rosendahl L. Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytologist, 1990, 115(1): 77-83.
[85]
Reinhart K O, Wilson G W T, Rinella M J. Predicting plant responses to mycorrhizae: integrating evolutionary history and plant traits. Ecology Letters, 2012, 15(7): 689-695.
[86]
Hoeksema J D, Chaudhary V B, Gehring C A, et al . A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters, 2010, 13(3): 394-407.
[87]
Perez M, Urcelay C. Differential growth response to arbuscular mycorrhizal fungi and plant density in two wild plants belonging to contrasting functional types. Mycorrhiza, 2009, 19(8): 517-523.
[88]
Koide R. Density-dependent response to mycorrhizal infection in Abutilon theophrasti Medic. Oecologia, 1991, 85(3): 389-395.
[89]
Allsopp N, Stock W D. Density dependent interactions between VA mycorrhizal fungi and even-aged seedlings of two perennial Fabaceae species. Oecologia, 1992, 91(2): 281-287.
[90]
Zhen L N, Yang G W, Yang H J, et al . Arbuscular mycorrhizal fungi affect seedling recruitment: a potential mechanism by which N deposition favors the dominance of grasses over forbs. Plant and Soil, 2014, 375(1-2): 127-136.
[91]
van der Heijden M G A, Horton T R. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology, 2009, 97(6): 1139-1150.
[92]
van der Heijden M G A. Arbuscular mycorrhizal fungi as support systems for seedling establishment in grassland. Ecology Letters, 2004, 7(4): 293-303.
[93]
van der Heijden M G A, Boller T, Wiemken A, et al . Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology, 1998, 79(6): 2082-2091.
[94]
Pankova H, Munzbergova Z, Rydlova J, et al . The response of Aster Amellus (Asteraceae) to mycorrhiza depends on the origins of both the soil and the fungi. American Journal of Botany, 2011, 98(5): 850-858.
[95]
Johnson N C, Wilson G W T, Bowker M A, et al . Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(5): 2093-2098.
[96]
Borowicz V A. The impact of arbuscular mycorrhizal fungi on plant growth following herbivory: a search for pattern. Acta Oecologica, 2013, 52: 1-9.
[97]
Bennett A E, Bever J D. Mycorrhizal species differentially alter plant growth and response to herbivory. Ecology, 2007, 88(1): 210-218.
[98]
Larimer A L, Clay K, Bever J D. Synergism and context dependency of interactions between arbuscular mycorrhizal fungi and rhizobia with a prairie legume. Ecology, 2014, 95(4): 1045-1054.
[99]
Grime J P, Mackey J M L, Hillier S H, et al . Floristic diversity in a model system using experimental microcosms. Nature, 1987, 328: 420-422.
[100]
Pietikainen A, Kytoviita M M. Defoliation changes mycorrhizal benefit and competitive interactions between seedlings and adult plants. Journal of Ecology, 2007, 95(4): 639-647.
[101]
Johnson N C, Rowland D L, Corkidi L, et al . Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology, 2003, 84(7): 1895-1908.
[102]
Johnson N C. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist, 2010, 185(3): 631-647.
[103]
Bonneau L, Huguet S, Wipf D, et al . Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula . New Phytologist, 2013, 199(1): 188-202.
[104]
Siqueira J O, Saggin-Junior O J. Dependency on arbuscular mycorrhizal fungi and responsiveness of some Brazilian native woody species. Mycorrhiza, 2001, 11(5): 245-255.
[105]
Schroeder M S, Janos D P. Phosphorus and intraspecific density alter plant responses to arbuscular mycorrhizas. Plant and Soil, 2004, 264(1-2): 335-348.
[106]
Janos D P. Plant responsiveness to mycorrhizas differs from dependence upon mycorrhizas. Mycorrhiza, 2007, 17(2): 75-91.
[107]
Ryan M H, Small D R, Ash J E. Phosphorus controls the level of colonisation by arbuscular mycorrhizal fungi in conventional and biodynamic irrigated dairy pastures. Australian Journal of Experimental Agriculture, 2000, 40(5): 663-670.
[108]
Corkidi L, Rowland D L, Johnson N C, et al . Nitrogen fertilization alters the functioning of arbuscular mycorrhizas at two semiarid grasslands. Plant and Soil, 2002, 240(2): 299-310.
[109]
Grman E, Robinson T M P. Resource availability and imbalance affect plant-mycorrhizal interactions: A field test of three hypotheses. Ecology, 2013, 94(1): 62-71.
[110]
Johnson N C, Graham J H, Smith F A. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytologist, 1997, 135(4): 575-585.
[111]
Jacquemyn H, Brys R, Merckx V S F T, et al . Coexisting orchid species have distinct mycorrhizal communities and display strong spatial segregation. New Phytologist, 2014, 202(2): 616-627.
[112]
Osanai Y, Bougoure D, Hayden H, et al . Co-occurring grass species differ in their associated microbial community composition in a temperate native grassland. Plant and Soil, 2013, 368(1-2): 419-431.
[113]
Montesinos-Navarro A, Segarra-Moragues J G, Valiente-Banuet A, et al . Plant facilitation occurs between species differing in their associated arbuscular mycorrhizal fungi. New Phytologist, 2012, 196(3): 835-844.
[114]
Wagg C, Jansa J, Stadler M, et al . Mycorrhizal fungal identity and diversity relaxes plant-plant competition. Ecology, 2011, 92(6): 1303-1313.
[115]
Danieli-Silva A, Uhlmann A, Vicente-Silva J, et al . How mycorrhizal associations and plant density influence intra- and inter-specific competition in two tropical tree species: Cabralea canjerana (Vell.) Mart. and Lafoensia pacari A.St.-Hil. Plant and Soil, 2010, 330(1-2): 185-193.
[116]
Francis R, Read D J. Direct transfer of carbon between plants connected by vesicular-arbuscular mycorrhizal mycelium. Nature, 1984, 307: 53-56.
[117]
Walder F, Niemann H, Natarajan M, et al . Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiology, 2012, 159(2): 789-797.
[118]
Schroeder-Moreno M S, Janos D P. Intra- and inter-specific density affects plant growth responses to arbuscular mycorrhizas. Botany, 2008, 86(10): 1180-1193.
[119]
Genney D R, Hartley S E, Alexander I J. Arbuscular mycorrhizal colonization increases with host density in a heathland community. New Phytologist, 2001, 152(2): 355-363.
[120]
Fitter A H. Costs and benefits of mycorrhizas: Implications for functioning under natural conditions. Experientia, 1991, 47(4): 350-355.
[121]
Xu L M. Mediation of Arbuscular Mycorrhizal Fungi on Plant Density Effects under Different Water Levels:Phenomena and Mechanism[D]. Hangzhou: Zhejiang University, 2010.
[122]
Klabi R, Hamel C, Schellenberg M P, et al . Interaction between legume and arbuscular mycorrhizal fungi identity alters the competitive ability of warm-season grass species in a grassland community. Soil Biology and Biochemistry, 2014, 70: 176-182.
[123]
Kytoviita M M, Vestberg M, Tuom J. A test of mutual aid in common mycorrhizal networks: established vegetation negates benefit in seedlings. Ecology, 2003, 84(4): 898-906.
[124]
Yang G W. Mechanisms of Mycorrhizal Fungi and Soil Nitrogen and Phosphorus Affecting Community Productivity Changes in the Stipa Steppe[D]. Beijing: China Agricultural University, 2014.
[125]
Streitwolf-Engel R, van der Heijden M G A, Wiemken A, et al . The ecological significance of arbuscular mycorrhizal fungal effects on clonal reproduction in plants. Ecology, 2001, 82(10): 2846-2859.
[126]
Liu Y, Shi G, Mao L, et al . Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytologist, 2012, 194(2): 523-535.
[127]
Reich P B, Knops J, Tilman D, et al . Plant diversity enhances ecosystem responses to elevated CO 2 and nitrogen deposition. Nature, 2001, 410: 809-812.
[128]
Reeves F B, Wagner D, Moorman T, et al . Role of endomycorrhizae in revegetation practices in the semi-arid west.1. comparison of incidence of mycorrhizae in severely disturbed vs natural environments. American Journal of Botany, 1979, 66(1): 6-13.
[129]
Allen M F, Clouse S D, Weinbaum B S, et al . Mycorrhizae and the integration of scales: from molecules to ecosystems. In: Allen M F. Mycorrhizal Functioning[M]. London: Chapman & Hall, 1992: 488-515.
[130]
Newsham K K, Watkinson A R, West H M, et al . Symbiotic fungi determine plant community structure—changes in a Lichen-Rich community induced by fungicide application. Functional Ecology, 1995, 9(3): 442-447.
[131]
Allsopp N, Stock W D. Mycorrhizal status of plants growing in the cape floristic region, South-Africa. Bothalia, 1993, 23(1): 91-104.
[132]
Shi W Q. The effects of arbuscular mycorrhizal fungi on Stipa grandis community in Inner Mongolia grassland. Ecology and Environmental Sciences, 2010, 19(2): 344-349.
[133]
Johnson N C, Wolf J, Koch G W. Interactions among mycorrhizae, atmospheric CO 2 and soil N impact plant community composition. Ecology Letters, 2003, 6(6): 532-540.
[134]
van der Heijden M G A, Wiemken A, Sanders I R. Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytologist, 2003, 157(3): 569-578.
[135]
Zobel M, Moora M, Haukioja E. Plant coexistence in the interactive environment: Arbuscular mycorrhiza should not be out of mind. Oikos, 1997, 78(1): 202-208.
[136]
Zaller J G, Heigl F, Grabmaier A, et al . Earthworm-mycorrhiza interactions can affect the diversity, structure and functioning of establishing model grassland communities. Plos One, 2011, 6(12): e29293.
[137]
Fellbaum C R, Gachomo E W, Beesetty Y, et al . Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(7): 2666-2671.