全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

不同NaCl胁迫对苗期扁蓿豆渗透调节物质及光合生理的影响

DOI: 10.11686/cyxb20150511, PP. 91-99

Keywords: 扁蓿豆,盐胁迫,光合生理,渗透调节

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用盆栽法研究不同浓度NaCl(0,50,100,150,200,250,300mmol/L)胁迫对扁蓿豆苗期有机渗透调节物质及光合参数的影响。结果表明,相同胁迫天数下,随盐浓度的升高。扁蓿豆可溶性蛋白含量、可溶性糖含量呈降低趋势,脯氨酸含量呈升高趋势。各个观测期和浓度之间存在差异,胁迫第7和14天,300mmol/L浓度下可溶性蛋白含量显著低于对照(P<0.05);胁迫第7,14和21天,50~100mmol/L浓度下,可溶性糖含量明显高于对照,但胁迫第28天,250~300mmol/L浓度处理显著低于对照(P<0.05)。胁迫第7天,150~300mmol/L浓度处理、胁迫第14天,200~300mmol/L浓度处理、胁迫第21天,250~300mmol/L浓度处理扁蓿豆脯氨酸含量均分别显著高于对照及其他处理(P<0.05)。可见,盐胁迫下,扁蓿豆产生的3种渗透调节物质调节方式不同,盐胁迫对扁蓿豆幼苗的抑制程度与盐浓度、胁迫时间呈正比。不同的胁迫浓度和胁迫时间,扁蓿豆3个观测期光合参数变化不尽相同。胁迫第14天,叶片净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)和胞间CO2浓度(Ci)随盐浓度的升高呈先上升后降低的趋势。50~100mmol/L浓度处理Pn、Tr和Gs显著高于对照,但300mmol/L浓度处理Pn和Tr显著低于对照及其他处理(P<0.05)。胁迫第28天,4个光合参数随盐浓度的升高而降低。叶片气孔限制值(Ls)和水分利用效率(WUE)在胁迫14和28d时,变化规律一致,随盐浓度的升高呈上升趋势。

References

[1]  Mao P S, Chang S J, Wang Y H. Effect of artificially ageing treatments on the membrane permeability of Leymus chinensis seed. Acta Prataculturae Sinica, 2008, 17(6): 66-70.
[2]  Han W B, Sheng Z B, Tang F L. The research progress of using salt-tolerant forage restore salinization meadow. Heilongjiang Animal Science and Velerinary Medicine, 2013, (9): 32-35.
[3]  Zhang G, Zhou Z Y, Zhang C P. The effect of land use on the levels of salt and organic matter in saline soil. Acta Prataculturae Sinica, 2007, 16(4): 15-20.
[4]  Gu F X, Zhang Y D, Liu Y Q. Analysis on the relationship between soil salinisation and fertility in Fukang oasis. Journal of Arid Land Resources and Environment, 2003, 17(2): 78-82.
[5]  Guo X, Li M, Xiao S G. Studies on effect of alkaligrass ( Pucclnellia chinampoensis Ohwi). Journal of Anhui Agricultural Science, 2008, 36(16): 6866-6867.
[6]  Li F K, Zhai G Y, Shen Y X. Effect of superphosphate application and rhizobia inoculation on growth and forage quality of Medicago sativa in the Yellow River Delta. Acta Prataculturae Sinica, 2005, 14(3): 87-93.
[7]  Zhao Y C, Qin J H. The effects on forage to ameliorate and fertilize saline-alkali soil in the Hexi area. Acta Prataculturae Sinica, 2005, 14(6): 63-66.
[8]  Zhang Z W. The Flora of China[M]. The Chinese Academy of Sciences, China Flora Editorial Board. Beijing: Science Press, 1998: 467.
[9]  Han H B, Shi W G, Li Z Y. Research progress of resistance of Medicago ruthenica . Pratacultural Science, 2011, 28(4): 631-635.
[10]  Li H Y, Li Z Y, Shi W G. The genetic diversity of three ecological Medicago ruthenica germplasms revealed by ISSR and SSR. Acta Prataculturae Sinica, 2012, 21(5): 107-113.
[11]  Li Z Y. The Mechanism Studies on Genetic Diversity in Medicago ruthenica Germplasm Resources[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011: 142.
[12]  Ashraf M, Foolad M A. Improving plant abiotic-stress resistance by exogenous application of osmoprotectants glycine betaine and proline. Environmental and Experimental Botany, 2007, 59: 206-216.
[13]  Xiao Q, Zheng H L, Chen Y. Effects of salinity on the growth and proline, soluble sugar and protein contents contents of Spartina alterniflora . Chinese Journal of Ecology, 2005, 24(4): 373-376.
[14]  Fang Z H, Dong K H. Effects of NaCl stress on soluble protein contents and soluble carbohydrate contents of Artemisia cnethifolia . Chinese Agricultural Science Bulletin, 2010, 26(16): 147-149.
[15]  Xiao W, Jia H X, Pu L M. Studies on physiological index of some halophytes. Acta Botanica Boreali-Occidentalia Sinica, 2000, 25(5): 818-825.
[16]  Fong Y Q, Cao Z Z, Jia Y Q. Study on salt tolerance of wild black medic germplasm. Pratacultural Science, 2007, 24(5): 27-33.
[17]  Munns R, Termaat A. Whole-plant responses to salinity. Functional Plant Biology, 1986, 13(1): 143-160.
[18]  Li Y, Liu G B, Gao H W. A comprehensive evaluation of salt-tolerance and the physiological response of Medicago sativa at the seedling stage. Acta Prataculturae Sinica, 2010, 19(4): 79-86.
[19]  Wang G B, Cao F L. Effects of salinity on growth and physiology of bald cypress seedlings. Journal of Nanjing Forestry University (Natural Sciences Edition), 2003, 27(3): 11-14.
[20]  Qin F M, Zhang H X, Wu W. Effects of salt stress on germination and seedling growth of Medicago falcata . Acta Prataculturae Sinica, 2010, 19(4): 71-78.
[21]  Jing Y X, Yuan Q H. Effects of salt stress on seedling growth of alfalfa ( Medicago sativa ) and ion distribution in different alfalfa organs. Acta Prataculturae Sinica, 2011, 20(2): 134-139.
[22]  Sultana N, Ikeda T, Itoh R. Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environmental and Experimental Botany, 1999, 42(3): 211-220.
[23]  Munns R. Comparative physiology of salt and water stress. Plant, Cell & Environment, 2002, 25(2): 239-250.
[24]  Flexas J, Bota J, Galmes J, et al . Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiologia Plantarum, 2006, 127(3): 343-352.
[25]  Kurban H, Saneoka H, Nehira K, et al . Effect of salinity on growth, photosynthesis and mineral composition in leguminous plant Alhagi pseudoalhagi (Bieb.). Soil Science and Plant Nutrition, 1999, 45(4): 851-862.
[26]  Parida A K, Das A B, Mittra B. Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, bruguiera parviflora. Trees, 2004, 18(2): 167-174.
[27]  Wang Y D, Quan B W, Piao J Z. Comparison about drought resistance of 4 forages at seedling stage under water stress. Journal of Agricultural Science Yanbian University, 2007, 29(2): 101-106.
[28]  Li R S, Xu H C, Yin G T. Advances in the water use efficiency of plant. Forest Research, 2003, 16(3): 366-371.
[29]  Cheng T, Fong H Y, Xu S J. Stable Carbon isotope composition of desert plant leaves and water-use efficiency. Journal of Desert Research, 2002, 22(3): 87-90.
[30]  Zhang Z P, Qi H, Zhang Y. Effects of water stress on photosynthetic rate and water use efficiency of Maize. Acta Agriculturae Boreali-Sinica, 2009, 24(S1): 155-158.
[31]  Wang D M, Jia Y, Cui J Z. Advances in research on effects of salt stress on plant and adaptive mechanism of the plant to salinity. Chinese Agricultural Science Bulletin, 2009, 25(4): 124-128.
[32]  Steduto P, Albrizio R, Giorio P, et al . Gas-exchange response and stomatal and non-stomatal limitations to carbon assimilation of sunflower under salinity. Environmental and Experimental Botany, 2000, 44(3): 243-255.
[33]  Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33(1): 317-345.
[34]  Zhao X, Wu Y X, Zhao M G. Reaponse of photosynthesis function of salt cress and arabidopsis to NaCl salt stress. Chinese Bulletin of Botany, 2007, 24(2): 154-160.
[35]  Lin Y, Li W, Fan H. Photosynthetic response of Kosteletzlya virginica L. presl to salt stress. Journal of Shandong Normal University (Natural Science), 2006, 21(2): 118-120.
[36]  Fan F, Zhang Y X, Jiang J. Effects of salt stress on the growth and photosynthetic physiological characteristics of alfalfa. Chinese Agricultural Science Bulletin, 2013, 29(17): 14-18.
[37]  范方, 张玉霞, 姜健. 盐胁迫对紫花苜蓿生长及光合生理特性的影响. 中国农学通报, 2013, 29(17): 14-18.
[38]  Ning H M. Studies of Identification and Evaluation on 6 Wild Medicago ruthenica Germplasm Resources[D]. Hohhot: Inner Mongolia Agricultural University, 2008: 55.
[39]  Zhang Y, Shi F L, Gao X. Establishment of cDNA-AFLP Reaction system of cold-induced genes transcript difference for Medicago ruthenica . Chinese Journal Grassland, 2013, 35(2): 13-18.
[40]  Shi F L, Guo X X, Li H. Examination and analysis of drought-resisting morphology and anatomy of Melilotoides ruthenica . Agricultural Research in the Arid Areas, 2005, 23(2): 115-118.
[41]  Cui X M, Liu X B, Li Z H. Effects of salicy acid on growth photosynthetic characteristics of Melilotoides ruthenica in branching stage under different water stress. Acta Prataculturae Sinica, 2012, 21(6): 82-93.
[42]  Zhang Y F, Liang Z W, Sui L. Effect on physiological characteristic of Medicago sativa under saline-alkali stress at seeding stage. Acta Prataculturae Sinica, 2009, 18(4): 230-235.
[43]  Zhu X G, Zhang Q D. Advances in the research on the effects of NaCl on photosynthesis. Chinese Bulletin Botany, 1999, 16(4): 332-338.
[44]  Han Z P, Guo S R, Jiao Y S. Effect of NaCl stress on growth and photosynthetic gas exchange of watermelon seedlings. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(4): 745-751.
[45]  Wang X K. Principle and Technology of Plant Physiological and Biochemical Experiments[M]. Beijing: High Education Press, 2006: 298.
[46]  Ma L. Study on Effects and Assessments of NaCl Stress on Seed Germination and Physiological Biochemical of Seedling of Herbages[D]. Taian: Shandong Agricultural University, 2010: 82.
[47]  Heuer B. Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants. Plant Science, 2003, 165(4): 693-699.
[48]  Xu F L, Luo L J, Gao C H. Inducing effects of plant growth regulators on the chilling resistance of sweet pepper( Capsicum annuum ). Chinese Journal of Pesticide Science, 2011, 13(1): 33-39.
[49]  Singh N K, Handa A K, Hasegawa P M, et al . Proteins associated with adaptation of cultured tobacco cells to NaCl. Plant Physiology, 1985, 79(1): 126-137.
[50]  毛培胜, 常淑娟, 王玉红. 人工老化处理对羊草种子膜透性的影响. 草业学报, 2008, 17(6): 66-70. 浏览
[51]  韩微波, 申忠宝, 唐凤兰. 我国利用耐盐牧草恢复盐渍化草地的研究进展. 黑龙江畜牧兽医, 2013, (9): 32-35.
[52]  张冈, 周志宇,张彩萍. 利用方式对盐渍化土壤中有机质和盐分的影响. 草业学报, 2007, 16(4): 15-20.
[53]  顾峰雪, 张远东, 刘永强. 阜康绿洲土壤盐渍化特征及其与肥力的相关性分析. 干旱区资源与环境, 2003,17(2): 78-82.
[54]  郭孝, 李明, 肖曙光. 碱茅改良黄河滩区盐渍化土壤的效果. 安徽农业科学, 2008, 36(16): 6866-6867.
[55]  李富宽, 翟桂玉, 沈益新. 施磷和接种根瘤菌对黄河三角洲紫花苜蓿生长及品质的影响. 草业学报, 2005, 14(3): 87-93.
[56]  赵芸晨, 秦嘉海. 几种牧草对河西走廊盐渍化土壤改土培肥的效应研究. 草业学报, 2005, 14(6): 63-66.
[57]  张振万.中国科学院中国植物志编辑委员会.中国植物志[M]. 北京: 科学出版社, 1998: 467.
[58]  韩海波, 师文贵, 李志勇. 扁蓿豆的抗性研究进展. 草业科学, 2011, 28(4): 631-635.
[59]  李鸿雁, 李志勇, 师文贵. 3种生态型野生扁蓿豆种质资源ISSR与SSR遗传多样性分析. 草业学报, 2012, 21(5): 107-113.
[60]  李志勇. 扁蓿豆种质资源遗传多样性机理的研究[D]. 北京: 中国农业科学院, 2011: 142.
[61]  宁红梅. 6份野生扁蓿豆种质资源鉴定与评价研究[D]. 呼和浩特: 内蒙古农业大学, 2008: 55.
[62]  张宇, 石凤翎, 高霞. 扁蓿豆冷诱导基因转录差异cDNA-AFLP反应体系的构建. 中国草地学报, 2013, 35(2): 13-18.
[63]  石凤翎, 郭晓霞, 李红. 扁蓿豆抗旱形态解剖结构观察与分析. 干旱地区农业研究, 2005, 23(2): 115-118.
[64]  崔秀妹, 刘信宝, 李志华. 不同水分胁迫下水杨酸对分枝期扁蓿豆生长及光合生理的影响. 草业学报, 2012, 21(6): 82-93.
[65]  张永锋, 梁正伟, 隋丽. 盐碱胁迫对苗期紫花苜蓿生理特性的影响. 草业学报, 2009, 18(4): 230-235. 浏览
[66]  朱新广, 张其德. NaCl对光合作用影响的研究进展. 植物学通报, 1999, 16(4): 332-338.
[67]  韩志平, 郭世荣, 焦彦生. NaCl胁迫对西瓜幼苗生长和光合气体交换参数的影响. 西北植物学报, 2008, 28(4): 745-751.
[68]  王学奎.植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2006: 298.
[69]  马琳.NaCl胁迫对牧草种子萌发与幼苗生理生化的影响及耐盐性评价[D]. 泰安: 山东农业大学, 2010: 82.
[70]  徐福乐, 罗立津, 高灿红. 植物生长调对甜椒的抗寒性诱导效应研究. 农药学学报, 2011, 13(1): 33-39.
[71]  肖强, 郑海雷, 陈瑶. 盐度对互花米节剂草生长及脯氨酸、可溶性糖和蛋白质含量的影响. 生态学杂志, 2005, 24(4): 373-376.
[72]  方志红, 董宽虎. NaCl胁迫对碱蒿可溶性糖和可溶性蛋白含量的影响. 中国农学通报, 2010, 26(16): 147-149.
[73]  肖雯, 贾恢先, 蒲陆梅. 几种盐生植物抗盐生理指标的研究. 西北植物学报, 2000, 25(5): 818-825.
[74]  冯毓琴, 曹致中, 贾蕴琪. 天蓝苜蓿野生种质的耐盐性研究. 草业科学, 2007, 24(5): 27-33.
[75]  李源, 刘贵波, 高洪文. 紫花苜蓿种质耐盐性综合评价及盐胁迫下的生理反应. 草业学报, 2010, 19(4): 79-86. 浏览
[76]  汪贵斌, 曹福亮. 盐胁迫对落羽杉生理及生长的影响. 南京林业大学学报(自然科学版), 2003, 27(3): 11-14.
[77]  秦峰梅, 张红香, 武祎. 盐胁迫对黄花苜蓿发芽及幼苗生长的影响. 草业学报, 2010, 19(4): 71-78. 浏览
[78]  景艳霞, 袁庆华. NaCl胁迫对苜蓿幼苗生长及不同器官中盐离子分布的影响. 草业学报, 2011, 20(2): 134-139.
[79]  王怡丹, 全炳武, 朴京珠. 水分胁迫对4种牧草苗期的抗旱性比较. 延边大学农学学报, 2007, 29(2): 101-106.
[80]  李荣生, 许煌灿, 尹光天. 植物水分利用效率的研究进展. 林业科学研究, 2003, 16(3): 366-371.
[81]  陈拓, 冯虎元, 徐世建. 荒漠植物叶片碳同位素组成及其水分利用效率. 中国沙漠, 2002,22 (3): 87-90.
[82]  张振平, 齐华, 张悦. 水分胁迫对玉米光合速率和水分利用效率的影响. 华北农学报, 2009, 24(S1): 155-158.
[83]  王东明, 贾媛, 崔继哲. 盐胁迫对植物的影响及植物盐适应性研究进展. 中国农学通报, 2009, 25(4): 124-128.
[84]  赵昕, 吴雨霞, 赵敏桂, 等. NaCl胁迫对盐芥和拟南芥光合作用的影响. 植物学通报, 2007, 24(2): 154-160.
[85]  林莺, 李伟, 范海. 海滨锦葵光合作用对盐胁迫的响应. 山东师范大学学报(自然科学版), 2006, 21(2): 118-120.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133