Mao P S, Chang S J, Wang Y H. Effect of artificially ageing treatments on the membrane permeability of Leymus chinensis seed. Acta Prataculturae Sinica, 2008, 17(6): 66-70.
[2]
Han W B, Sheng Z B, Tang F L. The research progress of using salt-tolerant forage restore salinization meadow. Heilongjiang Animal Science and Velerinary Medicine, 2013, (9): 32-35.
[3]
Zhang G, Zhou Z Y, Zhang C P. The effect of land use on the levels of salt and organic matter in saline soil. Acta Prataculturae Sinica, 2007, 16(4): 15-20.
[4]
Gu F X, Zhang Y D, Liu Y Q. Analysis on the relationship between soil salinisation and fertility in Fukang oasis. Journal of Arid Land Resources and Environment, 2003, 17(2): 78-82.
[5]
Guo X, Li M, Xiao S G. Studies on effect of alkaligrass ( Pucclnellia chinampoensis Ohwi). Journal of Anhui Agricultural Science, 2008, 36(16): 6866-6867.
[6]
Li F K, Zhai G Y, Shen Y X. Effect of superphosphate application and rhizobia inoculation on growth and forage quality of Medicago sativa in the Yellow River Delta. Acta Prataculturae Sinica, 2005, 14(3): 87-93.
[7]
Zhao Y C, Qin J H. The effects on forage to ameliorate and fertilize saline-alkali soil in the Hexi area. Acta Prataculturae Sinica, 2005, 14(6): 63-66.
[8]
Zhang Z W. The Flora of China[M]. The Chinese Academy of Sciences, China Flora Editorial Board. Beijing: Science Press, 1998: 467.
[9]
Han H B, Shi W G, Li Z Y. Research progress of resistance of Medicago ruthenica . Pratacultural Science, 2011, 28(4): 631-635.
[10]
Li H Y, Li Z Y, Shi W G. The genetic diversity of three ecological Medicago ruthenica germplasms revealed by ISSR and SSR. Acta Prataculturae Sinica, 2012, 21(5): 107-113.
[11]
Li Z Y. The Mechanism Studies on Genetic Diversity in Medicago ruthenica Germplasm Resources[D]. Beijing: Chinese Academy of Agricultural Sciences, 2011: 142.
[12]
Ashraf M, Foolad M A. Improving plant abiotic-stress resistance by exogenous application of osmoprotectants glycine betaine and proline. Environmental and Experimental Botany, 2007, 59: 206-216.
[13]
Xiao Q, Zheng H L, Chen Y. Effects of salinity on the growth and proline, soluble sugar and protein contents contents of Spartina alterniflora . Chinese Journal of Ecology, 2005, 24(4): 373-376.
[14]
Fang Z H, Dong K H. Effects of NaCl stress on soluble protein contents and soluble carbohydrate contents of Artemisia cnethifolia . Chinese Agricultural Science Bulletin, 2010, 26(16): 147-149.
[15]
Xiao W, Jia H X, Pu L M. Studies on physiological index of some halophytes. Acta Botanica Boreali-Occidentalia Sinica, 2000, 25(5): 818-825.
[16]
Fong Y Q, Cao Z Z, Jia Y Q. Study on salt tolerance of wild black medic germplasm. Pratacultural Science, 2007, 24(5): 27-33.
[17]
Munns R, Termaat A. Whole-plant responses to salinity. Functional Plant Biology, 1986, 13(1): 143-160.
[18]
Li Y, Liu G B, Gao H W. A comprehensive evaluation of salt-tolerance and the physiological response of Medicago sativa at the seedling stage. Acta Prataculturae Sinica, 2010, 19(4): 79-86.
[19]
Wang G B, Cao F L. Effects of salinity on growth and physiology of bald cypress seedlings. Journal of Nanjing Forestry University (Natural Sciences Edition), 2003, 27(3): 11-14.
[20]
Qin F M, Zhang H X, Wu W. Effects of salt stress on germination and seedling growth of Medicago falcata . Acta Prataculturae Sinica, 2010, 19(4): 71-78.
[21]
Jing Y X, Yuan Q H. Effects of salt stress on seedling growth of alfalfa ( Medicago sativa ) and ion distribution in different alfalfa organs. Acta Prataculturae Sinica, 2011, 20(2): 134-139.
[22]
Sultana N, Ikeda T, Itoh R. Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environmental and Experimental Botany, 1999, 42(3): 211-220.
[23]
Munns R. Comparative physiology of salt and water stress. Plant, Cell & Environment, 2002, 25(2): 239-250.
[24]
Flexas J, Bota J, Galmes J, et al . Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiologia Plantarum, 2006, 127(3): 343-352.
[25]
Kurban H, Saneoka H, Nehira K, et al . Effect of salinity on growth, photosynthesis and mineral composition in leguminous plant Alhagi pseudoalhagi (Bieb.). Soil Science and Plant Nutrition, 1999, 45(4): 851-862.
[26]
Parida A K, Das A B, Mittra B. Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, bruguiera parviflora. Trees, 2004, 18(2): 167-174.
[27]
Wang Y D, Quan B W, Piao J Z. Comparison about drought resistance of 4 forages at seedling stage under water stress. Journal of Agricultural Science Yanbian University, 2007, 29(2): 101-106.
[28]
Li R S, Xu H C, Yin G T. Advances in the water use efficiency of plant. Forest Research, 2003, 16(3): 366-371.
[29]
Cheng T, Fong H Y, Xu S J. Stable Carbon isotope composition of desert plant leaves and water-use efficiency. Journal of Desert Research, 2002, 22(3): 87-90.
[30]
Zhang Z P, Qi H, Zhang Y. Effects of water stress on photosynthetic rate and water use efficiency of Maize. Acta Agriculturae Boreali-Sinica, 2009, 24(S1): 155-158.
[31]
Wang D M, Jia Y, Cui J Z. Advances in research on effects of salt stress on plant and adaptive mechanism of the plant to salinity. Chinese Agricultural Science Bulletin, 2009, 25(4): 124-128.
[32]
Steduto P, Albrizio R, Giorio P, et al . Gas-exchange response and stomatal and non-stomatal limitations to carbon assimilation of sunflower under salinity. Environmental and Experimental Botany, 2000, 44(3): 243-255.
[33]
Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33(1): 317-345.
[34]
Zhao X, Wu Y X, Zhao M G. Reaponse of photosynthesis function of salt cress and arabidopsis to NaCl salt stress. Chinese Bulletin of Botany, 2007, 24(2): 154-160.
[35]
Lin Y, Li W, Fan H. Photosynthetic response of Kosteletzlya virginica L. presl to salt stress. Journal of Shandong Normal University (Natural Science), 2006, 21(2): 118-120.
[36]
Fan F, Zhang Y X, Jiang J. Effects of salt stress on the growth and photosynthetic physiological characteristics of alfalfa. Chinese Agricultural Science Bulletin, 2013, 29(17): 14-18.
Ning H M. Studies of Identification and Evaluation on 6 Wild Medicago ruthenica Germplasm Resources[D]. Hohhot: Inner Mongolia Agricultural University, 2008: 55.
[39]
Zhang Y, Shi F L, Gao X. Establishment of cDNA-AFLP Reaction system of cold-induced genes transcript difference for Medicago ruthenica . Chinese Journal Grassland, 2013, 35(2): 13-18.
[40]
Shi F L, Guo X X, Li H. Examination and analysis of drought-resisting morphology and anatomy of Melilotoides ruthenica . Agricultural Research in the Arid Areas, 2005, 23(2): 115-118.
[41]
Cui X M, Liu X B, Li Z H. Effects of salicy acid on growth photosynthetic characteristics of Melilotoides ruthenica in branching stage under different water stress. Acta Prataculturae Sinica, 2012, 21(6): 82-93.
[42]
Zhang Y F, Liang Z W, Sui L. Effect on physiological characteristic of Medicago sativa under saline-alkali stress at seeding stage. Acta Prataculturae Sinica, 2009, 18(4): 230-235.
[43]
Zhu X G, Zhang Q D. Advances in the research on the effects of NaCl on photosynthesis. Chinese Bulletin Botany, 1999, 16(4): 332-338.
[44]
Han Z P, Guo S R, Jiao Y S. Effect of NaCl stress on growth and photosynthetic gas exchange of watermelon seedlings. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(4): 745-751.
[45]
Wang X K. Principle and Technology of Plant Physiological and Biochemical Experiments[M]. Beijing: High Education Press, 2006: 298.
[46]
Ma L. Study on Effects and Assessments of NaCl Stress on Seed Germination and Physiological Biochemical of Seedling of Herbages[D]. Taian: Shandong Agricultural University, 2010: 82.
[47]
Heuer B. Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants. Plant Science, 2003, 165(4): 693-699.
[48]
Xu F L, Luo L J, Gao C H. Inducing effects of plant growth regulators on the chilling resistance of sweet pepper( Capsicum annuum ). Chinese Journal of Pesticide Science, 2011, 13(1): 33-39.
[49]
Singh N K, Handa A K, Hasegawa P M, et al . Proteins associated with adaptation of cultured tobacco cells to NaCl. Plant Physiology, 1985, 79(1): 126-137.