全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

柑橘/大球盖菇间作对三峡库区紫色土活性有机碳库的影响

DOI: 10.11686/cyxb20150507, PP. 53-65

Keywords: 果菇间作,活性有机碳库,碳库管理指数,紫色土,三峡库区

Full-Text   Cite this paper   Add to My Lib

Abstract:

分析柑橘园间作大球盖菇模式对紫色土活性有机碳库的影响,以期为土壤碳循环及缓解气候变化的研究提供基础数据和理论依据。通过在紫色土柑橘园中间作大球盖菇,对比分析密植间作(HD)、正常间作(TC)、稀疏间作(SP)和裸地对照(BT)及辅料对照(ST)等5组处理对紫色土柑橘园上下层(0~10cm,30~50cm)土壤中总有机碳(TOC)、可溶性有机碳(DOC)、易氧化有机碳(ROC)、轻组有机碳(LFOC)及土壤微生物量碳(SMBC)等指标的影响。在大球盖菇整个生长期中,柑橘/大球盖菇间作密度显著影响上、下层土壤中活性有机碳(DOC、ROC、LFOC、SMBC)的含量,且上层(0~10cm)土壤中总有机碳和活性有机碳的含量显著高于下层(30~50cm)土壤。此外,各处理在不同土壤层次中对不同活性有机碳组分的影响存在显著性差异,其中在上层(0~10cm)土壤中,密植间作(HD)处理中活性有机碳(DOC、ROC、LFOC及SMBC)含量显著高于其他处理(P<0.05),而在下层(30~50cm)土壤中,稀疏间作(SP)处理中可溶性有机碳(DOC)、轻组有机碳(LFOC)及微生物量碳(SMBC)的含量均高于其他处理(P<0.05)。柑橘/大球盖菇间作系统中,间作密度与总有机碳(TOC)、易氧化有机碳(ROC)存在显著负相关关系,与可溶性有机碳(DOC)、轻组有机碳(LFOC)和土壤微生物量碳(SMBC)存在极显著负相关关系,且不同活性有机碳组分间存在显著或极显著正相关关系。柑橘/大球盖菇间作能够显著提高上层(0~10cm)土壤中碳库管理指数,却不利于下层(30~50cm)土壤碳的累积。柑橘/大球盖菇间作在一定程度上能够提高紫色土土壤中活性有机碳的形成和累积,增加紫色土土壤碳储量。

References

[1]  Li Z M. Purple Soil in China[M]. Chengdu: Science Press, 2003: 325-367.
[2]  Tang J, Li Y, Deng F Y, et al . Distribution characteristics of nutrition elementsin the three gorges reservoir district. Acta Pedologica Sinica, 2005, 42(3): 473-478.
[3]  Huang Y, Li D L, Li Q L, et al . Assessment of the soil environmental quality of the Citrus orchards in three gorges reservoir region. Journal of Fruit Science, 2004, 21(3): 247-251.
[4]  Nelson D W, Sommers L E. Methods of Soil Analysis[M]. Wisconsin: American Society of Agronomy, 1982: 539-579.
[5]  Liu M, Yu W T, Jiang Z S, et al . A research review on soil active organic carbon. Chinese Journal of Ecology, 2006, 25(11): 1400-1404.
[6]  Blair G J, Conteh A, Lefroy R, et al . Labile organic carbon determined by permanganate oxidation and its relationships to other measurements of soil organic carbon. Humic Substances in the Environment, 1999, 1: 3-15.
[7]  Sharma V, Hussain S, Sharma K R, et al . Labile carbon pools and soil organic carbon stocks in the foothill Himalayas under different land use systems. Geoderma, 2014, 232: 81-87.
[8]  Santos V B, Araújo A S F, Leite L F C, et al . Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems. Geoderma, 2012, 170: 227-231.
[9]  Janssens I A, Lankreijer H, Matteucci G, et al . Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology, 2001, 7(3): 269-278.
[10]  Thorburn P J, Meier E A, Collins K, et al . Changes in soil carbon sequestration, fractionation and soil fertility in response to sugarcane residue retention are site-specific. Soil and Tillage Research, 2012, 120: 99-111.
[11]  Xu X, Thornton P E, Post W M, et al . A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology and Biogeography, 2013, 22(6): 737-749.
[12]  Shang W, Li Y Q, Wang S K, et al . Dynamic changes of surface soil organic carbon and light-fraction organic carbon aftermobile dune afforestation with Mongolian pine in Horqin Sandy Land. Chinese Journal of Applied Ecology, 2011, 22(8): 2069-2074.
[13]  Huang N L. Taxonomic status and characteristics of Stropharia rugoso annulata . Edible Fungi, 1995, (6): 11.
[14]  Liao J Y, Lei G N. The Experimental research on transplanting Stropharia ruqoso-annulata in pear orchard. Modern Agricultural Sciences and Technology, 2010, (24): 108-109.
[15]  Yan S W, Su S C. Annulata stereo cultivation mode of Stropharia rugoso . Edible Fungi, 1997, (6): 34-35.
[16]  Zhang C L, Du H B, Yang F J, et al . Study on anniversary cultivation mode of coffee and straw rotting fungus.Tropical Agricultural Science & Technology, 2014, 37(2): 7-10.
[17]  Liu E, Teclemariam S G, Yan C, et al . Long-term effects of no-tillage management practice on soil organic carbon and its fractions in the northern China. Geoderma, 2014, 213: 379-384.
[18]  Pandey D, Agrawal M, Bohra J S, et al . Recalcitrant and labile carbon pools in a sub-humid tropical soil under different tillage combinations: A case study of rice-wheat system. Soil and Tillage Research, 2014, 143: 116-122.
[19]  Liao H K, Li J, Long J, et al . Effects of land use and abandonment on soil labile organic carbon in the karst region of Southwest China. Environment Science, 2014, 35(1): 240-247.
[20]  Li W, Zheng Z C, Li T X, et al . Effects of returning farmland to tea on soil organic carbon pool of hilly region in the Western Sichuan. Scientia Agricultura Sinica, 2014, 47(8): 1642-1651.
[21]  Yang B J, Huang G Q, Lan Y, et al . Effects of nitrogen application and winter green manure on soil active organic carbon andthe soil carbon pool management index. Chinese Journal of Applied Ecology, 2014, 25(10): 2907-2913.
[22]  Gregorich E G, Janzen H H. Structure and Organic Matter Storage in Agricultural Soils[M]. Boca Raton: Lewis Publishers, 1996: 167-190.
[23]  Vance E D, Brookes P C, Jenkinson D S, et al . Microbial biomass measurements in forest soils: the use of the chloroform fumigation-incubation method in strongly acid soils. Soil Biology and Biochemistry, 1987, 19(6): 697-702.
[24]  Wu J, Joergensen R G, Pommerening B, et al . Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biology and Biochemistry, 1990, 22(8): 1167-1169.
[25]  Verma B C, Datta S P, Rattan R K, et al . Labile and stabilised fractions of soil organic carbon in some intensively cultivated alluvial soils. Journal of Environmental Biology, 2013, 34(6): 1069-1075.
[26]  Zhao H C, Liu J H, Zhang X J. Effect of painting density of spring corn on organic carbon fractions of soil. Ecology and Environmental Sciences, 2012, 21(6): 1051-1056.
[27]  Guan G Y, Fan Y M, Wu H Q, et al . Effects of fencing on soil active organic carbon and carbon pool management index in mountain meadow steppe. Pratacultural Science, 2014, 31(9): 1618-1622.
[28]  Huang J, Song C. Effects of land use on soil water soluble organic C and microbial biomass C concentrations in the Sanjiang Plain in northeast China. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 2010, 60(2): 182-188.
[29]  Lu W T, Jia Z K, Zhang P, et al . Effects of straw returning on soil labile organic carbon and enzyme activity in semi-arid areas of Southern Ningxia, China. Journal of Agro-Environment Science, 2011, 30(3): 522-528.
[30]  Wang Q K, Wang S L, Feng Z W, et al . Active soil organic matter and its relationship with soil quality. Actaecologica Sinica, 2005, 25(3): 513-519.
[31]  Mack J, Hatten J, Sucre E, et al . The effect of organic matter manipulations on site productivity, soil nutrients, and soil carbon on a southern loblolly pine plantation. Forest Ecology and Management, 2014, 326: 25-35.
[32]  Coser T R, De Figueiredo C C, Gerosa Ramos M L, et al . Carbon recover obtained by three methods in organic matter fractions of latosol under maize-grass intercropping in the cerrado. Bioscience Journal, 2012, 28(1): 91-97.
[33]  Suman A, Lal M, Singh A K, et al . Microbial biomass turnover in Indian subtropical soils under different sugarcane intercropping systems. Agronomy Journal, 2006, 98(3): 698-704.
[34]  李仲明. 中国紫色土[M]. 成都: 科学出版社, 2003: 325-367.
[35]  唐将, 李勇, 邓富银, 等. 三峡库区土壤营养元素分布特征研究. 土壤学报, 2005, 42(3): 473-478.
[36]  黄昀, 李道高, 李其林, 等. 三峡库区柑橘园土壤环境质量研究. 果树学报, 2004, 21(3): 247-251.
[37]  柳敏, 宇万太, 姜子绍, 等. 土壤活性有机碳. 生态学杂志, 2006, 25(11): 1400-1404.
[38]  尚雯, 李玉强, 王少昆, 等. 科尔沁沙地流动沙丘造林后表层土壤有机碳和轻组有机碳的变化. 应用生态学报, 2011, 22(8): 2069-2074.
[39]  黄年来. 大球盖菇的分类地位和特征特性. 食用菌, 1995, (06): 11.
[40]  廖家艳, 雷干农. 梨园套种大球盖菇试验研究. 现代农业科技, 2010, (24): 108-109.
[41]  颜淑婉, 苏诗垂. 大球盖菇立体高效栽培模式. 食用菌, 1997, (06): 34-35.
[42]  张传利, 杜华波, 杨发军, 等. 咖啡与草腐型食用菌复合高效周年栽培模式研究. 热带农业科技, 2014, 37(2): 7-10.
[43]  Lu R K. The Analysis Method of Soil Agricultural Chemistry[M]. Beijing: China Cgricultural Science and Technology Press, 2000: 27-65.
[44]  Ghani A, Dexter M, Perrott K W, et al . Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biology and Biochemistry, 2003, 35(9): 1231-1243.
[45]  Blair G J, Lefroy R D B, Lisle L, et al . Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Crop and Pasture Science, 1995, 46(7): 1459-1466.
[46]  廖洪凯, 李娟, 龙健, 等. 土地利用及退耕对喀斯特山区土壤活性有机碳的影响. 环境科学, 2014, 35(1): 240-247.
[47]  李玮, 郑子成, 李廷轩,等. 退耕植茶对川西低山丘陵区土壤有机碳库的影响. 中国农业科学, 2014, 47(8): 1642-1651.
[48]  杨滨娟, 黄国勤, 兰延, 等. 施氮和冬种绿肥对土壤活性有机碳及碳库管理指数的影响. 应用生态学报, 2014, 25(10): 2907-2913.
[49]  鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 27-65.
[50]  赵海超, 刘景辉, 张星杰. 春玉米种植密度对土壤有机碳组分的影响. 生态环境学报, 2012, 21(6): 1051-1056.
[51]  管光玉, 范燕敏, 武红旗, 等. 封育对山地草甸草原土壤活性有机碳及碳库管理指数的影响.草业科学, 2014, 31(9): 1618-1622.
[52]  路文涛, 贾志宽, 张鹏, 等. 秸秆还田对宁南旱作农田土壤活性有机碳及酶活性的影响. 农业环境科学学报, 2011, 30(3): 522-528.
[53]  王清奎, 汪思龙, 冯宗炜,等. 土壤活性有机质及其与土壤质量的关系. 生态学报, 2005, 25(3): 513-519.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133