全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

基于投影寻踪模型的草原蝗虫栖境评价及风险评估

DOI: 10.11686/cyxb20150504, PP. 25-33

Keywords: 草原蝗虫,草原植被,投影寻踪模型,风险评估

Full-Text   Cite this paper   Add to My Lib

Abstract:

草原蝗虫发生与栖境存在紧密而复杂的关系,二者关系的研究是评估蝗灾发生风险的基础。本文分析了不同栖境内蝗虫种群密度与21个植被特征参数的相关关系,利用投影寻踪模型进行了栖境评价及风险评估,并进行模型验证。结果表明,低优参数植物生物量多样性对蝗虫种群密度影响最大,最佳投影向量a为0.6725;高优参数禾本科生态优势度对亚洲小车蝗密度影响最大,最佳投影向量a为0.6547;样点植被投影特征值Zi与蝗虫种群密度线性相关关系极显著(y=48.861x-18.937,R=0.9509**),Zi越大,栖境内植被越适合蝗虫的发生,蝗灾发生的风险越高,根据Zi值可预测不同栖境草原蝗虫的发生。投影寻踪模型评价不同植被条件下蝗虫的发生风险,可以排除与数据结构和特征无关或关系很小变量的干扰,是一种更稳健实用的方法,对于蝗虫的监测预警具有重要意义。

References

[1]  Yan Z C, Chen Y L. Composition of grasshoppers species in different habitats in Xilin river basin, Inner Mongolia. Acta Entomologica Sinica, 1997, 40(3): 271-275.
[2]  Yan Z C, Chen Y L.Habital selection of grasshoppers: relationship of habital selection and horizontal structure. Wuyi Science Journal, 1998, 14: 251-257.
[3]  Qiu X H, Li H C. Energy dynamics of Chorthippus dubius (Zubovsky) populations in three different plant communities in Inner Mongolia grassland ecosystem. Acta Ecologica Sinica, 1993, 13(1): 1-8.
[4]  Kang L, Li H C, Chen Y L. Relationship of orthopteran ecological distribution and vegetation types in Xilin river basin, Inner Mongolia. Acta Phytoecologica et Geobotanica Sinica, 1989, 13(4): 341-349.
[5]  Wu H H, Xu Y H, Cao G C, et al . Ecological effects of typical grassland types in Inner Mongolia on grasshopper community. Scientia Agricultura Sinica, 2012, 45(20): 4178-4186.
[6]  Cease A J, Elser J J, Ford C F, et al . Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen content. Science, 2012, 335: 467-469.
[7]  Liu G H, Wang G J, Wang S P, et al . Study on the diet composition and trophic niche of main herbivores in the Inner Mongolia Typical steppe-Taking Leymus chinensis community as an exemple. Acta Prataculturae Sinica, 2013, 22(1): 103-109.
[8]  Su T, Chen Q, Zhao Y X, et al . Effects of invasive weeds on relative grasshopper abundance in alpine steppe in the Qilian Mountains. Acta Prataculturae Sinica, 2013, 22(3): 85-91.
[9]  Franzke A, Unsicker S B, Specht J, et al . Being a generalist herbivore in a diverse world: How do diets from different grasslands influence food plant selection and fitness of the grasshopper Chorthippus parallelus . Ecological Entomology, 2010, 35: 126-138.
[10]  Rominger A J, Miller T E X, Collins S L. Relative contributions of neutral and niche-based processes to the structure of a desert grassland grasshopper community. Oecologia, 2009, 161(4): 791-800.
[11]  Andersen A N, Ludwig J A, Lowe L M, et al . Grasshopper biodiversity and bioindicators in Australian tropical savannas: Responses to disturbance in Kakadu National Park. Austral Ecology, 2001, 26(3): 213-222.
[12]  Belovsky G E, Jennifer B S. Dynamics of two Montana grasshopper populations: relationships among weather, food abandance and intraspecific competion. Oecologia, 1995, 101: 383-396.
[13]  Xi R H, Liu J P. Effects on Oedaleus asiaticus in growth and fecundity for feeding different foods. Entomological Knowledge, 1984, 4: 153-155.
[14]  Kazumi M, Naota M. Diet mixing and its effect on polyphagous grasshopper nymphs. Ecological Research, 2004, 19: 269-274.
[15]  Pulliam H R. Diet optimism with nutrient constraints. American Naturalist, 1975, 109: 765-768.
[16]  Ma Q Z. Protection of grassland ecology, and construction of beautiful pastoral areas. Acta Prataculture Sinica, 2014, 23(1): 1-2.
[17]  Jiang L, Li M L. Model of projection pursuit water quality evaluation based on immune evolutionary algorithm. Journal of Sichuan University (Natural Science Edition), 2004, 41(4): 816-819.
[18]  Fu Q, Zhao X Y. Principles and Applications of Projection Pursuit Model[M]. Beijing: Science Press, 2006.
[19]  付强, 赵小勇. 投影寻踪模型原理及其应用[M]. 北京:科学出版社, 2006.
[20]  李如忠. 水质评价理论模式研究进展及趋势分析. 合肥工业大学学报(自然科学版), 2005, 28(4): 369-373.
[21]  巩爱岐, 王薇娟, 张生合. 青海湖滨区草地蝗虫发生与环境因素关联性的初步探讨. 青海草业, 2001, 10(2): 38-41.
[22]  He D H, Zheng Z M, Liu Y D. Studies of grasshoppers spatiotemporal niche of desert steppe. Journal of Ningxia Agricultural College, 1997, 18(2): 1-9.
[23]  Allan E, Crawley M J. Contrasting effects of insect and molluscan herbivores on plant diversity in a long-term field experiment. Ecology Letters, 2011, 14: 1246-1253.
[24]  Guo Z W, Li H C, Gan Y L. Grasshopper (Orthoptera: Acrididae) biodiversity and grassland ecosystems. Insect Science, 2006, 13(3): 221-227.
[25]  Awmack C S, Leather S R. Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology, 2002, 47: 817-844.
[26]  Scherber C, Eisenhauer N, Weisser W W, et al . Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature, 2010, 468: 553-556.
[27]  Knop E, Schmid B, Herzog F. Impact of regional species pool on grasshopper restoration in Hay Meadows. Restoration Ecology, 2008, 16(1): 34-38.
[28]  Zhao C Z, Zhou W, Wang K M, et al . Relationship between ecological distribution of grasshoppers and their habitats in the middle and upper reaches of Heihe River. Journal of Lanzhou University (Naturnal Sciences), 2009, 45(4): 42-47.
[29]  Zhao C Z, Zhou W, Wang K M, et al . The CCA analysis between grasshopper and plant community in upper reaches of Heihe River. Acta Ecologica Sinica, 2011, 31(12): 3384-3390.
[30]  Freeland W J, Janzen D H. Strategies in herbivory by mammals:he role of plant secondary compounds. American Naturalist, 1974, 108: 269-289.
[31]  Xu K, Li G Q, Li S Z. A comparison study on diversity of plant community of different utilization during recovering of degenerative steppe in Yanchi county, Ningxia. Acta Agriculturae Boreali-occidentalis Sinica, 2007, 16(4): 106-111.
[32]  Shang Z H, Yao A X, Guo X S. Evaluation and review on measurement methods of biodiversity at home and abroad. Journal of Ningxia Agricultural College, 2002, 23(3): 68-73.
[33]  Gao D W, Yao Y, Wu Y P. Evaluation of energy saving and consumption reduction in different regions based on projection pursuit classification model. Journal of Applied Statistics and Management, 2010, 29(3): 391-399.
[34]  Guo J C, Li X L. The application of projection pursuit model in evaluation of enterprise performance. Finance and Accounting Monthly, 2009, 1: 49-51.
[35]  Jin J L, Yang X H, Ding J. An improved simple genetic algori thm-accelerating genetic algorithm. Systems Engineering-Theory & Practice, 2001, 4(4): 8-13.
[36]  Ni C J, Wang S J, Cui P. New model for projection pursuit dynamic cluster and its application to classifying natural grasslands. Journal of Safety and Environment, 2006, 6(5): 68-71.
[37]  Dong X X, Wei X, Song L J. Comprehensive evaluation method for medical quality based on projection pursuit model. Chinese Journal of Health Statistics, 2012, 29(5): 636-638.
[38]  Cao Y Q, Xing X S, Yi J M, et al . Application of projection pursuit technique in water security assessment of Wafangdian City. Water Resources Protection, 2012, 26(3): 5-7.
[39]  Peng Y G, Luo X P, Wei W. New fuzzy adaptive simulated annealing genetic algorithm. Control and Decision, 2009, 24(6): 843-848.
[40]  Jin J L, Wei Y M. Projection pursuit model for comprehensive evaluation of water quality. Acta Scientiae Circumstantiae, 2001, 21(4): 431-434.
[41]  Yu G R, Ye H, Xai Z Q, et al . Improvement of projection pursuit classification Model and its application in evaluating water quality. Journal of Sichuan University (Engineering science edition), 2008, 40(6): 24-29.
[42]  Li R Z. Progress and trend analysis of theoretical methodology of water quality assessment. Journal of Hefei University of Technology, 2005, 28(4): 369-373.
[43]  Bernays E A, Gonzalez N, Angel J. Food mixing by generalist grasshoppers: plant secondary compounds structure the pattern of feeding. Journal of Insect Behavior, 1995, 8(2): 161-180.
[44]  Gong A Q, Wang W J, Zhang S H. Research of correlation between grasshopper and environmental factor in the region around Qinhai lake. Qinghai Prataculture, 2001, 10(2): 38-41.
[45]  颜忠诚, 陈永林. 内蒙古锡林河流域不同生境中蝗虫种类组成的分析. 昆虫学报, 1997, 40(3): 271-275.
[46]  颜忠诚, 陈永林. 草原蝗虫的栖境选择: 栖境选择与水平结构的关系. 武夷科学, 1998, 14: 251-257.
[47]  邱星辉, 李鸿昌. 草原生态系统狭翅雏蝗种群的能量动态. 生态学报, 1993, 13(1): 1-8.
[48]  康乐, 李鸿昌, 陈永林. 内蒙古锡林河流域直翅目昆虫生态分布规律与植被类型关系的研究.植物生态学与地植物学学报, 1989, 13(4): 341-349.
[49]  贺达汉, 郑哲民, 刘颖东. 荒漠草原蝗虫时空生态位的研究. 宁夏农学院学报, 1997, 18(2): 1-9.
[50]  赵成章, 周伟, 王科明, 等. 黑河中上游草原蝗虫生态分布与生境的关系. 兰州大学学报: 自然科学版, 2009, 45(4): 42-47.
[51]  赵成章, 周伟, 王科明, 等. 黑河上游蝗虫与植被关系的CAA分析. 生态学报, 2011, 31(12): 3384-3390.
[52]  吴惠惠, 徐云虎, 曹广春, 等. 内蒙古典型草原草地类型对蝗虫群落优势种群的生态效 应. 中国农业科学, 2012, 45(20): 4178-4186.
[53]  刘贵和, 王国杰, 汪诗平, 等. 内蒙古典型草原主要草食动物食性及其营养生态位研究-以羊草群落为例. 草业学报, 2013, 22(1): 103-109.
[54]  孙涛, 陈强, 赵亚雄, 等. 祁连山高山草地毒杂草侵入对蝗虫相对多度的影响. 草业学报, 2013, 22(3): 85-91. 浏览
[55]  席瑞华, 刘举鹏. 不同食料植物对亚洲小车蝗生长和生殖力的影响. 昆虫学报, 1984, 27(4): 153-155.
[56]  马启智. 保护草原生态、建设美丽牧区. 草业学报, 2014, 23(1): 1-2. 浏览
[57]  徐坤, 李国旗, 李世忠. 宁夏盐池县退化草地恢复过程中不同利用方式下植物群落多样性的对比研究. 西北农业学报, 2007, 16(4): 106-111.
[58]  尚占环, 姚爱兴, 郭旭生. 国内外生物多样性测度方法的评价与综述. 宁夏农学院学报, 2002, 23(3): 68-73.
[59]  高大伟, 姚奕, 仵雁鹏. 基于投影寻踪分类模型的各地区节能降耗评价研究. 统计与管理, 2010, 29(3): 391-399.
[60]  郭加昌, 李秀丽. 企业绩效评价中投影寻踪模型的应用. 财会月刊, 2009, 1: 49-51.
[61]  金菊良, 杨晓华, 丁晶. 标准遗传算法的改进方案-加速遗传算法. 系统工程理论与实践, 2001, 4(4): 8-13.
[62]  倪长健, 王顺久, 崔鹏. 投影寻踪动态聚类模型及其在天然草地分类中的应用. 安全与环境学报, 2006, 6(5): 68-71.
[63]  董小小, 魏歆, 宋丽娟. 投影寻踪模型在医疗质量综合评价中的应用. 中国卫生统计, 2012, 29(5): 636-638.
[64]  曹永强, 邢晓森, 伊吉美, 等. 投影寻踪技术在瓦房店市水资源安全评价中的应用. 水资源保护, 2012, 26(3): 5-7.
[65]  彭勇刚, 罗小平, 韦魏. 一种新的模糊自适应模拟退火遗传算法. 控制与决策, 2009, 24(6): 843-848.
[66]  金菊良, 魏一鸣. 水质综合评价的投影寻踪模型. 环境科学学报, 2001, 21(4): 431-434.
[67]  于国荣, 叶辉, 夏自强, 等. 投影寻踪分类模型的改进及在水质评价中的应用. 四川大学学报(工程科学版), 2008, 40(6): 24-29.
[68]  姜林, 李梦龙. 基于免疫算法优化的投影寻踪水质评价模型. 四川大学学报(自然科学版), 2004, 41(4): 816-819.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133