全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

青藏高原东部橐吾属植物的花性分配和雌全同株系统

DOI: 10.11686/cyxb20150520, PP. 167-174

Keywords: 舌状花,雌全同株,橐吾属,性分配,性系统

Full-Text   Cite this paper   Add to My Lib

Abstract:

雌全同株是指同一植株内同时拥有雌花和两性花的性系统,至今对该性系统的适应性研究较少。本文以青藏高原东部常见的3种橐吾属植物为材料,调查植株内头状花序的位置,植株高度和个体叶片去除对花性分配的影响。结果表明,3种橐吾均自交不亲和,并且花部特征存在显著的花序轴内变异,无论总状花序基向式发育还是顶向式发育,均表现出早期花有较大的花展示和偏雌的性分配,晚期花拥有较多胚珠和偏雄的性分配。较高的个体拥有较大的花展示,并在雌性功能上投入更多;被去除叶片的个体的花展示和雌花生物量投入均明显下降。然而,植株高度和叶片去除并不会改变花特征在花序内的变异。分析认为橐吾属植株的雌全同株系统的进化意义为资源的灵活分配和吸引传粉者,但无法排除减少雌雄功能冲突的可能。

References

[1]  Bertin R I, Kerwin M A. Floral sex ratios and gynomonoecy in Aster (Asteraceae). American Journal of Botany, 1998, 85: 235-244.
[2]  Bertin R I, Gwisc G M. Floral sex ratios and gynomonoecy in Solidago (Asteraceae). Biological Journal of the Linnean Society, 2002, 77: 413-422.
[3]  Zhang G F, Xie T P, Du G Z. Variation in floral sex allocation, female success, and seed predation within racemiform synflorescence in the gynomonoecious Ligularia virgaurea (Asteraceae). Journal of Plant Research, 2012, 125: 527-538.
[4]  Yampolsky C, Yampolsky H. Distribution of sex forms in the phanerogamic flora. Bibliotheca Genetica, 1922, 3: 1-62.
[5]  Lu Y, Huang S Q. Adaptive advantages of gynomonoecious species. Acta Phytotaxonomica Sinica, 2006, 44(2): 231-239.
[6]  Leppik E E. The evolution of capitulum types of the Compositae in the light of insect-flower interaction. In: Heywood V H, Harbone J B, Turner B L. The Biology and Chemistry of the Compositae[M]. London: Academic Press, 1977: 61-89.
[7]  Mani M S, Saravanan J M. Pollination Ecology and Evolution in Compositae (Asteraceae)[M]. New Hampshire: Science Publishers, 1999.
[8]  Charnov E L, Bull J. When is sex environmentally determined. Nature, 1977, 266: 828-830.
[9]  Willson M F. Plant Reproductive Ecology[M]. New York: John Wiley and Sons, 1983.
[10]  Vallius E. Position-dependent reproductive success of flowers in Dactylorhiza maculate (Orchidaceae). Functional Ecology, 2000, 14: 573-579.
[11]  Hiraga T, Sakai S. The effects of inflorescence size and flower position on biomass and temporal sex allocation in Lobelia sessiliflora . Plant Ecology, 2007, 188: 205-214.
[12]  Zhao Z G, Meng J L, Fan B L, et al . Reproductive patterns within racemes in protandrous Aconitum gymnandrum (Ranunculaceae): potential mechanism and among-family variation. Plant Systematics and Evolution, 2008, 273: 247-256.
[13]  Ashman T L, Hitchens M S. Dissecting the causes of variation in intra-inflorescence allocation in a sexually polymorphic species Fragaria virginiana (Rosaceae). American Journal of Botany, 2000, 87: 197-204.
[14]  Buide M L. Intra-inflorescence variation in floral traits and reproductive success of the hermaphrodite Silene acutifolia . Annals of Botany, 2004, 94: 441-448.
[15]  Buide M L. Disentangling the causes of intra-inflorescence variation in floral traits and fecundity in the hermaphrodite Silene acutifolia . American Journal of Botany, 2008, 95: 490-497.
[16]  Guitián J, Navarro L. Allocation of reproductive resources within the inflorescences of Petrocoptis grandiflora (Caryophyllaceae). Canadian Journal of Botany, 1996, 74: 1482-1486.
[17]  Medrano M, Guitián P, Guitián J. Patterns of fruit and seed set within inflorescences of Pancratium maritimum (Amaryllidaceae): nonuniform pollination, resource limitation, or architectural effects. American Journal of Botany, 2000, 87: 493-501.
[18]  Susko D J, Lovett-Doust L. Patterns of seed mass variation and their effects on seeding traits in Alliaria petiolata (Brassicaceae). American Journal of Botany, 2000, 87: 56-66.
[19]  Ishii H S, Sakai S. Temporal variation in floral display size and individual floral sex allocation in racemes of Narthecim asiaticum (Liliaceae). American Journal of Botany, 2002, 89: 441-446.
[20]  Guitián J, Guitián P, Medranol M. Causes of fruit set variation in Polygonatum odoratum (Liliaceae). Plant Biology, 2001, 3: 637-641.
[21]  Obeso J R. Seed mass variation in the perennial herb Asphodelus albus : sources of variation and position effect. Oecologia, 1993, 93: 571-575.
[22]  Diggle P K, Miller J S. Architectural effects mimic floral sexual dimorphism in Solanum (Solanaceae). American Journal of Botany, 2004, 91: 2030-2040.
[23]  Miller J S, Diggle P K. Diversification of andromonoecy in Solanum section Lasiocarpa (Solanaceae): the roles of phenotypic plasticity and architecture. American Journal of Botany, 2003, 90: 707-715.
[24]  Narbona E, Dirzo R. Experimental defoliation affects male but not female reproductive performance of the tropical monoecious plant Croton suberosus (Euphorbiaceae). Annals of Botany, 2010, 106: 359-369.
[25]  Lin L, Li Y K, Zhang F W, et al . A study on carbon storage administration in alpine Kobresia humilis meadow in relation to influence of human acitivity. Acta Prataculturae Sinica, 2013, 22(1): 308-314.
[26]  Wang J B, Zhang D G, Cao G M, et al . Regional characteristics of the alpine meadow degradation succession on the Qinghai-Tibetan Platean. Acta Prataculturae Sinica, 2013, 22(2): 1-10.
[27]  Chen W Y, Zhang J, Qi D C, et al . Desertification dynamic change trend and quantitative analysis of driving factors of alpine meadow in Maqu County in the First Meander of the Yellow River. Acta Prataculturae Sinica, 2013, 22(2): 11-21.
[28]  Ma R J, Du G Z, Lu B R, et al . Reproductive modes of three Ligularia weeds (Asteraceae) in grasslans in Qinghai-Tibet Plateau and their implications for grassland management. Ecology Research, 2006, 21: 246-254.
[29]  Bertin R I. The ecology of sex expression in red buckeye. Ecology, 1982, 63: 445-456.
[30]  Torices R, Méndez M, Gómez J M. Where do monomorphic sexual systems fit in the evolution of dioecy? Insights from the largest family of Angiosperms. New Phytologist, 2011, 190: 238-248.
[31]  Diggle P K. Architectural effects and the interpretation of patterns of fruit and seed development. Annual Review of Ecology and Systematics, 1995, 26: 531-552.
[32]  Berry P E, Calvo R N. Pollinator dependence and position dependent fruit set in the high Andean orchid Myrosmodes cochleare (Orchidaceae). Plant Systematics and Evolution, 1991, 174: 93-101.
[33]  Brunet J, Charlesworth D. Floral sex allocation in sequentially blooming plants. Evolution, 1995, 49: 70-79.
[34]  Emms S K. Andromonoecy in Zigadenus paniculatus (Liliaceae): spatial and temporal patterns of sex allocation. American Journal of Botany, 1993, 80: 914-923.
[35]  Lloyd D G. Sexual strategies in plants. I. An hypothesis of serial adjustment of maternal investment during one reproductive session. New Phytologist, 1980, 86: 69-79.
[36]  Abbott R J, Schmitt J. Effect of environment on percentage female ray florets per capitulum and outcrossing potential in a self-compatible composite ( Senecio vulgaris L. var. hibernicus Syme). New Phytologist, 1985, 101: 219-229.
[37]  Collin C L, Shykoff J A. Outcrossing rates in the gynomonoecious-gynodioecious species Dianthus sylvestris (Caryophyllaceae). American Journal of Botany, 2003, 90: 579-585.
[38]  Bertin R I, Newman C M. Dichogamy in angiosperms. The Botanical Review, 1993, 59: 112-152.
[39]  Zhang D Y. Plant Life-history Evolution and Reproductive Ecology[M]. Beijing: Science Press, 2003.
[40]  Marshall D F, Abbott R J. Polymorphism for outcrossing frequency at the ray floret locus in Senecio vulgaris L. III. Causes. Heredity, 1984, 53: 145-149.
[41]  卢洋, 黄双全. 论雌花两性花同株植物的适应意义. 植物分类学报, 2006, 44(2): 231-239.
[42]  林丽, 李以康, 张法伟, 等. 人类活动对高寒矮嵩草草甸的碳容管理分析. 草业学报, 2013, 22(1): 308-314.
[43]  王建兵, 张德罡, 曹广民, 等.青藏高原高寒草甸退化演替的分区特征. 草业学报, 2013, 22(2): 1-10.
[44]  陈文业, 张瑾, 戚登臣, 等. 黄河首曲-玛曲县高寒草甸沙化动态演变趋势及其驱动因子定量分析. 草业学报, 2013, 22(2): 11-21.
[45]  张大勇. 植物生活史进化与繁殖生态学[M]. 北京: 科学出版社, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133