Bertin R I, Kerwin M A. Floral sex ratios and gynomonoecy in Aster (Asteraceae). American Journal of Botany, 1998, 85: 235-244.
[2]
Bertin R I, Gwisc G M. Floral sex ratios and gynomonoecy in Solidago (Asteraceae). Biological Journal of the Linnean Society, 2002, 77: 413-422.
[3]
Zhang G F, Xie T P, Du G Z. Variation in floral sex allocation, female success, and seed predation within racemiform synflorescence in the gynomonoecious Ligularia virgaurea (Asteraceae). Journal of Plant Research, 2012, 125: 527-538.
[4]
Yampolsky C, Yampolsky H. Distribution of sex forms in the phanerogamic flora. Bibliotheca Genetica, 1922, 3: 1-62.
[5]
Lu Y, Huang S Q. Adaptive advantages of gynomonoecious species. Acta Phytotaxonomica Sinica, 2006, 44(2): 231-239.
[6]
Leppik E E. The evolution of capitulum types of the Compositae in the light of insect-flower interaction. In: Heywood V H, Harbone J B, Turner B L. The Biology and Chemistry of the Compositae[M]. London: Academic Press, 1977: 61-89.
[7]
Mani M S, Saravanan J M. Pollination Ecology and Evolution in Compositae (Asteraceae)[M]. New Hampshire: Science Publishers, 1999.
[8]
Charnov E L, Bull J. When is sex environmentally determined. Nature, 1977, 266: 828-830.
[9]
Willson M F. Plant Reproductive Ecology[M]. New York: John Wiley and Sons, 1983.
[10]
Vallius E. Position-dependent reproductive success of flowers in Dactylorhiza maculate (Orchidaceae). Functional Ecology, 2000, 14: 573-579.
[11]
Hiraga T, Sakai S. The effects of inflorescence size and flower position on biomass and temporal sex allocation in Lobelia sessiliflora . Plant Ecology, 2007, 188: 205-214.
[12]
Zhao Z G, Meng J L, Fan B L, et al . Reproductive patterns within racemes in protandrous Aconitum gymnandrum (Ranunculaceae): potential mechanism and among-family variation. Plant Systematics and Evolution, 2008, 273: 247-256.
[13]
Ashman T L, Hitchens M S. Dissecting the causes of variation in intra-inflorescence allocation in a sexually polymorphic species Fragaria virginiana (Rosaceae). American Journal of Botany, 2000, 87: 197-204.
[14]
Buide M L. Intra-inflorescence variation in floral traits and reproductive success of the hermaphrodite Silene acutifolia . Annals of Botany, 2004, 94: 441-448.
[15]
Buide M L. Disentangling the causes of intra-inflorescence variation in floral traits and fecundity in the hermaphrodite Silene acutifolia . American Journal of Botany, 2008, 95: 490-497.
[16]
Guitián J, Navarro L. Allocation of reproductive resources within the inflorescences of Petrocoptis grandiflora (Caryophyllaceae). Canadian Journal of Botany, 1996, 74: 1482-1486.
[17]
Medrano M, Guitián P, Guitián J. Patterns of fruit and seed set within inflorescences of Pancratium maritimum (Amaryllidaceae): nonuniform pollination, resource limitation, or architectural effects. American Journal of Botany, 2000, 87: 493-501.
[18]
Susko D J, Lovett-Doust L. Patterns of seed mass variation and their effects on seeding traits in Alliaria petiolata (Brassicaceae). American Journal of Botany, 2000, 87: 56-66.
[19]
Ishii H S, Sakai S. Temporal variation in floral display size and individual floral sex allocation in racemes of Narthecim asiaticum (Liliaceae). American Journal of Botany, 2002, 89: 441-446.
[20]
Guitián J, Guitián P, Medranol M. Causes of fruit set variation in Polygonatum odoratum (Liliaceae). Plant Biology, 2001, 3: 637-641.
[21]
Obeso J R. Seed mass variation in the perennial herb Asphodelus albus : sources of variation and position effect. Oecologia, 1993, 93: 571-575.
[22]
Diggle P K, Miller J S. Architectural effects mimic floral sexual dimorphism in Solanum (Solanaceae). American Journal of Botany, 2004, 91: 2030-2040.
[23]
Miller J S, Diggle P K. Diversification of andromonoecy in Solanum section Lasiocarpa (Solanaceae): the roles of phenotypic plasticity and architecture. American Journal of Botany, 2003, 90: 707-715.
[24]
Narbona E, Dirzo R. Experimental defoliation affects male but not female reproductive performance of the tropical monoecious plant Croton suberosus (Euphorbiaceae). Annals of Botany, 2010, 106: 359-369.
[25]
Lin L, Li Y K, Zhang F W, et al . A study on carbon storage administration in alpine Kobresia humilis meadow in relation to influence of human acitivity. Acta Prataculturae Sinica, 2013, 22(1): 308-314.
[26]
Wang J B, Zhang D G, Cao G M, et al . Regional characteristics of the alpine meadow degradation succession on the Qinghai-Tibetan Platean. Acta Prataculturae Sinica, 2013, 22(2): 1-10.
[27]
Chen W Y, Zhang J, Qi D C, et al . Desertification dynamic change trend and quantitative analysis of driving factors of alpine meadow in Maqu County in the First Meander of the Yellow River. Acta Prataculturae Sinica, 2013, 22(2): 11-21.
[28]
Ma R J, Du G Z, Lu B R, et al . Reproductive modes of three Ligularia weeds (Asteraceae) in grasslans in Qinghai-Tibet Plateau and their implications for grassland management. Ecology Research, 2006, 21: 246-254.
[29]
Bertin R I. The ecology of sex expression in red buckeye. Ecology, 1982, 63: 445-456.
[30]
Torices R, Méndez M, Gómez J M. Where do monomorphic sexual systems fit in the evolution of dioecy? Insights from the largest family of Angiosperms. New Phytologist, 2011, 190: 238-248.
[31]
Diggle P K. Architectural effects and the interpretation of patterns of fruit and seed development. Annual Review of Ecology and Systematics, 1995, 26: 531-552.
[32]
Berry P E, Calvo R N. Pollinator dependence and position dependent fruit set in the high Andean orchid Myrosmodes cochleare (Orchidaceae). Plant Systematics and Evolution, 1991, 174: 93-101.
[33]
Brunet J, Charlesworth D. Floral sex allocation in sequentially blooming plants. Evolution, 1995, 49: 70-79.
[34]
Emms S K. Andromonoecy in Zigadenus paniculatus (Liliaceae): spatial and temporal patterns of sex allocation. American Journal of Botany, 1993, 80: 914-923.
[35]
Lloyd D G. Sexual strategies in plants. I. An hypothesis of serial adjustment of maternal investment during one reproductive session. New Phytologist, 1980, 86: 69-79.
[36]
Abbott R J, Schmitt J. Effect of environment on percentage female ray florets per capitulum and outcrossing potential in a self-compatible composite ( Senecio vulgaris L. var. hibernicus Syme). New Phytologist, 1985, 101: 219-229.
[37]
Collin C L, Shykoff J A. Outcrossing rates in the gynomonoecious-gynodioecious species Dianthus sylvestris (Caryophyllaceae). American Journal of Botany, 2003, 90: 579-585.
[38]
Bertin R I, Newman C M. Dichogamy in angiosperms. The Botanical Review, 1993, 59: 112-152.
[39]
Zhang D Y. Plant Life-history Evolution and Reproductive Ecology[M]. Beijing: Science Press, 2003.
[40]
Marshall D F, Abbott R J. Polymorphism for outcrossing frequency at the ray floret locus in Senecio vulgaris L. III. Causes. Heredity, 1984, 53: 145-149.