全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

干旱、半干旱地区天然草原灌木及其肥岛效应研究进展

DOI: 10.11686/cyxb20150423, PP. 201-207

Keywords: 干旱半干旱草原,灌丛,肥岛效应,植被,养分

Full-Text   Cite this paper   Add to My Lib

Abstract:

灌丛可以改变局部的生态小环境,使其周围植物生物量、植物组成、植物化学成分、土壤中大量营养元素和微量营养元素产生变异,将养分集中于灌木灌丛下,改变其周围的局部小环境,影响灌丛下的植被和土壤养分,称作灌丛肥岛效应。灌丛因截留水分、养分及遮阴等作用使其周围局部土壤和植被环境发生变化,导致其树冠下养分和水分聚集,土壤养分相对周围空地更肥沃。探讨干旱和半干旱地区天然草原的灌丛化过程及其生态学效应,了解其对荒漠草地恢复过程的作用,减缓土壤侵蚀和草地生产力下降,对植被的演替和恢复重建等都有重要的生态学意义,并为防治干旱半干旱荒漠生态地区土地退化提供理论依据。

References

[1]  Liu J J, Chen H B, Tian C M, et al. Soil properties of rhizosphere micro-ecosystem in main kinds of trees in Huoditang Forest Region of Qinlin. Journal of Soil Erosion and Soil and Water Conservation, 1998, 4(3): 52-56.
[2]  Xiong X G, Han X G. Ecology—water island effect and the new areas of grassland thickets. Plant Magazine, 2003, (2): 45-46.
[3]  Zhang H, Shi P J, Zheng Q H. Semi-arid areas of natural grassland research progress and soil heterogeneity brush. Acta Phytoecologica Sinica, 2001, 25(3): 366-370.
[4]  Wang Y F, Yong S P, Liu Z L. Inner Mongolia grassland. Inner Mongolia, Ningxia, Chinese Academy of Sciences Comprehensive Expedition. Inner Mongolia Vegetation. Beijing: Science Press, 1985: 207-215.
[5]  Pei S F, Fu H, Chen Y M, et al. Influence of Z. xanthoxylum shrubs on soil fertility in enclosure and grazing conditions. Journal of Desert Research, 2004, 24(6): 763-767.
[6]  Su Y Z, Zhao H L, Zhang T H. Influencing mechanism of several shrubs and sub-shrubs on soil fertility in Keerqin sandy land. Chinese Journal of Applied Ecology, 2002, 13(7): 802-806.
[7]  Garcia-Moya E, Mckell C M. Contributions of shrubs to the nitrogen economy of a desert-wash plant community. Ecology, 1970, 51: 81-88.
[8]  Goldberg D E, Turner R M. Vegetation change and plant demography in permanent plots in the Sonoran Desert. Ecology, 1986, 67: 695-712.
[9]  Gibbens R P, Beck R F. Changes in grass basal area and forb densities over a 64-year period on grassland types of the Jornada Experimental Range. Journal of Range Management, 1985, 41: 186-192.
[10]  Schlesinger W H, Reynolds J F, Cunningham G L, et al. Biologial feedbacks in global desertification. Science, 1990, 247: 1043-1048.
[11]  Stock W D, Lewis O A M. Soil nitrogen and the role of fire as a mineralizing agent in a South African coastal fynbos ecosystem. Ecology, 1986, 74: 317-328.
[12]  Reynolds J F, Virginia R A, Schlesinger W H. Defining functional types for models of desertification. In: Smith T M, Shugart H H, Woodword F I. Plant Function Types: Their Relevance to Ecosystem Properties and Global Change. Cambridge UK: Cambridge University Press, 1997:195-216.
[13]  Garner W, Steinbergar Y. A proposed mechanism for the formation of ‘fertile islands’ in the desert ecosystem. Journal of Arid Environments, 1998, 16: 257-262.
[14]  Whitford W G, Anderson J, Rice P M. Stemflow contribution to the fertile island effect in creosotebush, Larrea tridentate. Journal of Arid Environments, 1997, 35: 451-457.
[15]  Lee K K, Wani S P, Sahrawat K L, et al. Nitrogen and/or phosphorus fertilization effects on organic carbon and mineral contents in the rhizosphere of field grown sorghum. Journal of Soil Science and Plant Nutrition, 1997, 43(1): 117-126.
[16]  Lynch J M, Whipps J M. Substrate flow in the rhizosphere. Plant and Soil, 1990, 129: 1-10.
[17]  Archer S, Schimel D S, Holland E A. Mechanisms of shrub land expansion-land use, climate or CO2. Climate Change, 1995: 29:91-99.
[18]  Wezel A, Rajot J L, Herbrig C. Influence of shrubs on soil characteristics and their function in sahelian agro-ecosystems in semi-arid Niger. Journal of Arid Environments, 2000, 44: 383-398.
[19]  Michels K. Wind Erosion in the Southern Sahelian Zone. Extent, Control and Effects on Millet Production. Stuttgart: Verlag Ulrich E, Grauer, 1994: 99.
[20]  Kainkwa R M R, Stigter C J. Wind reduction downwind from savanna woodland edge. Netherlands Journal of Agricultural Science, 1994, 42: 145-157.
[21]  Pei S H, Fu H, Wang C G, et al. Observations on changes in soil properties in grazed and nongrazed areas of Alxa Desert Steppe, Inner Mongolia. Arid Land Research and Management, 2006, 20: 161-175.
[22]  Scott-Wendt J, Chase R G, Hossner L R. Soil chemical variability in sandy Ustalfs in semiarid Niger, West Africa. Soil Science, 1988, 145: 414-419.
[23]  Kellman M. Soil enrichment by neotropical savanna trees. Journal of Ecology, 1979, 67: 565-577.
[24]  Bernhard-Reversat F. Biogeochemical cycle of nitrogen in a semi-arid savanna. Oikos, 1982, 38: 321-332.
[25]  Belsky A J, Amundson R G, Duxbury J M, et al. The effects of trees on their physical, chemical, and biological environments in a semi-arid savanna in Kenya. Journal of Applied Ecology, 1989, 26: 1005-1024.
[26]  Weltzin J F, Coughenour M B. Savanna tree influence on understory vegetation and soil nutrients in north-western Kenya. Journal of Vegetation Science, 1990, 1: 325-334.
[27]  Parsons A J, Abrahams A D, Simanton J R. Microtopography and soil-surface materials on semi-arid piedmont hillslopes, southern Arizona. Journal of Arid Environments, 1992, 22: 107-115.
[28]  Breman H, Kessler J J. Woody Plants in Agro-Ecosystems of Semi-Arid Regions— with an Emphasis on the Sahelian Countries. Advanced Series in Agricultural Science 23. Berlin, Heidelberg: Springer, 1995:340.
[29]  Tongway D J, Ludwig J A. Small-scale resource heterogeneity in semi-arid landscapes. Pacific Conservation Biology, 1994, 1: 201-208.
[30]  Schlesinger W H, Raikes J A, Hartley A E, et al. On the spatial pattern of soil nutrients in desert ecosystems. Ecology, 1996, 77: 364-374.
[31]  Charley J L, West N E. Plant-induced soil chemical patterns in some shrub-dominated semi-desert ecosystems of Utah. Journal of Ecology, 1975, 63: 945-963.
[32]  Zinke P J, Crocker R L.The influence of giant sequoia on soil properties. Forest Science, 1962, 8: 2-11.
[33]  Grieve I C. Some relationships between vegetation patterns and soil variability in the forest of Dean, U. K. Journal of Biogeography, 1977,4:191-199.
[34]  Jenny H. The Soil Resource: Origin and Behavior. New York: Springer, 1980: 377.
[35]  Perez F L. The influence of organic matter addition by caulescent Andean rosettes on surficial soil properties.Geoderma, 1992, 54: 151-171.
[36]  Charley J L, West N E. Micro-patterns of nitrogen mineralisation activity of some shrub-dominated semi-desert ecosystems of Utah. Soil Biology & Biochemistry, 1977, 9: 357-365.
[37]  Zhong F, Zhao J, Sun R G, et al. Spatial distribution of soil nutrients and soil microbes in five arbore-bushe-grass lands at the south-north hills in Lanzhou, China. Acta Prataculturae Sinica, 2010, 19(3): 94-101.
[38]  Archibald S, Bond W J. Growing tall vs growing wide: Tree architecture and allometry of Acacia karroo in forest, savanna, and arid environments. Oikos, 2003, 102: 3-14.
[39]  Li Y Q, Zhang T H, Zhao X Y, et al. Rainfall interception and stemflow for Caragana microphllain Horqin Sandy Land, northern China. Acta Prataculturae Sinica, 2010, 19(5): 267-272.
[40]  Yang Z P, Li X Y, Sun Y L, et al. Characteristics of rainfall interception and stemflow for Salix psammophila in Maowusu sandland, Northwest China. Advances in Water Science, 2008, 19(5): 693-698.
[41]  Navar J, Bryan N. Interception loss and rainfall redistribution by three semi-arid growing shrubs in Northeastern Mexico. Journal of Hydrology, 1990, 115:51-63.
[42]  Su Y Z, Zhao H L, Zhang T H, et al. Characteristics of sandy grassland soils under post-grazing natural restoration in Horqin sandy land. Journal of Desert Research, 2002, (4): 333-337.
[43]  Stuart-Hill G L,Taiton N M.The competitive interaction between Acacia karoo and herbacous layer,and how this is influenced by defoliation. Journal of Applied Ecology, 1989, 26: 285-298.
[44]  Archer S. Woody plant encroachment into southwestern grasslands and savannas:rates, patches and proximate cause. In: Varra M, Laycock W, Pieper R. Ecological Implications of Livestock Herbivore in the West. Denver: Society of Range Management, 1994: 13-68.
[45]  Wang G H, Ren J Z, Zhang Z H. A study on the population diversity of plant community in Hexi mountain—oasis desert area:I General features. Acta Prataculturae Sinica, 2001, 10(1): 1-12.
[46]  Li X Z, Zhang S M, Xing X R. Spatial variation of plant biomass and soil chemical element contents induced by Caragana microphylla. Acta Prataculturae Sinica, 2002, 11(1): 24-30.
[47]  Zinke P J. The pattern of individual forest trees on soil properties. Ecology, 1962, 48: 30-133.
[48]  Wang N L. Developing shrub forest under the guide of “decision”. Protection Forest Science and Technology, 2004, 1: 22-24.
[49]  Wang Y R, Zeng Y J, Fu H, et al. Affects of over grazing and enclosure on desert vegetation succession of Reaumuria soongrica. Journal of Desert Research, 2002, 22(4): 321-327.
[50]  Zhao H L, Su Y Z, Zhang H, et al. Multiple effects of shrub on soil properties and understory vegetation in Horqin sand land, Inner Mongolia. Journal of Desert Research, 2007, 27(3): 385-390.
[51]  Wang G H, Ren J Z, Zhang Z H. Studies on the population diversity of plant community in Hexi mountain—oasis—desert area, Gansu, China. Impacts of grazing pressure on species diversity in steppe. Acta Prataculturae Sinica, 2002, 11(1): 31-37.
[52]  Dean W R J, Milton S J, Jeltsch F. Large trees, fertile islands, and birds in arid Savanna. Journal of Arid Environments, 1999, 41: 61-78.
[53]  Martinez M E, Whitford W G. Stemflow, through fall and channelization of stemflow by roots in three Chinhuahuan desert shrubs. Journal of Arid Environments, 1996, 32: 271-287.
[54]  Ren X, Chu G X, Wang G D, et al. Fractal dimension characteristics of soil particles in oasis desert ecotone in Southern edge of Junggar Basin. Journal of Desert Research, 2009, 29(2): 298-304.
[55]  Evans C A, Miller E K, Andrew J. Effect of nitrogen and light on nutrient concentrations and associated physiological responses in birch and fir seedlings. Plant and Soil, 2001, 236: 197-207.
[56]  Pontes L DA S, Soussana J F, Louault F. Leaf traits affect the above-ground productivity and quality of pasture grasses. Functional Ecology, 2007, 21: 844-853.
[57]  Tucic B, Tomic V, Avramov S, et al. Testing the adaptive plasticity of Iris pumila leaf traits to natural light conditions using phenotypic selection analsis. Acta Oecologica, 1998, 19: 473-481.
[58]  Titus J H, Nowak R S, Smith S D. Soil resource heterogeneity in the Mojave desert. Journal of Arid Environments, 2002, 52: 269-292.
[59]  Oguchi R, Hikosaka K, Hiura T, et al. Leaf anatomy and light acclimation in woody seedlings after gap formation in a cool temperate deciduous forest. Oecologia, 2006, 149: 571-582.
[60]  White J W, Montes R C. Variation in parameters related to leaf thickness incommon bean (Phaseolus vulgaris L.). Field Crop Research, 2005, 91: 7-21.
[61]  钟芳, 赵瑾, 孙荣高, 等. 兰州南北两山五类乔灌木林草地土壤养分与土壤微生物空间分布研究. 草业学报, 2010, 19(3): 94-101. 浏览
[62]  李衍青, 张铜会, 赵学勇, 等. 科尔沁沙地小叶锦鸡儿灌丛降雨截留特征研究. 草业学报, 2010, 19(5): 267-272. 浏览
[63]  杨志鹏, 李小雁, 孙永亮, 等. 毛乌素沙地沙柳灌丛降雨截留与树干茎流特征. 水科学进展, 2008, 19(5): 693-698.
[64]  苏永中,赵哈林,张铜会,等. 不同强调放牧后自然恢复的沙质草地土壤性状特征. 中国沙漠, 2002, (4): 333-337.
[65]  王国宏, 任继周, 张自和. 河西山地绿洲荒漠植物群落种群多样性研究. Ⅰ生态地理及植物群落的基本特征. 草业学报,2001, 10(1): 1-12.
[66]  李香真, 张淑敏, 邢雪荣. 小叶锦鸡儿灌丛引起的植物生物量和土壤化学元素含量的空间变异. 草业学报, 2002, 11(1): 24-30.
[67]  王恩苓. 落实《决定》精神, 加快干旱、半干旱地区灌木林发展. 防护林科技, 2004, 1: 22-24.
[68]  王彦荣,曾彦军,傅华,等.过牧及封育对红砂荒漠植被演替的影响.中国沙漠, 2002, 22(4): 321-327.
[69]  赵哈林, 苏永中, 张华, 等. 灌丛对流动沙地土壤特性和草本植物的影响. 中国沙漠, 2007, 27(3): 385-390.
[70]  王国宏, 任继周, 张自和. 河西山地绿洲荒漠植物群落多样性研究.Ⅱ放牧扰动下草地多样性的变化特征. 草业学报,2002,11(1):31-37.
[71]  任雪, 褚贵新, 王国栋, 等. 准噶尔盆地南缘绿洲-沙漠过渡带“肥岛”形成过程中土壤颗粒的分形研究.中国沙漠, 2009, 29(2): 298-304.
[72]  李玉霖, 崔建垣, 苏永中. 不同沙丘生境主要植物比叶面积和叶干物质含量的比较. 生态学报, 2005, 25(2): 301-304.
[73]  毛伟, 李玉霖, 赵学勇, 等. 科尔沁沙地灌丛内外草本植物狗尾草叶性状的比较研究. 草业学报, 2009, 18(6): 144-150. 浏览
[74]  刘发民, 金燕, 张小军. 梭梭林“肥岛”效应的初步研究. 干旱区资源与环境, 1999, 13(3): 86-88.
[75]  熊小刚, 韩兴国. 内蒙古半干旱草原灌丛化过程中小叶锦鸡儿引起的土壤碳、氮资源空间异质性分布. 生态学报, 2005, 25(7): 1678-1683.
[76]  Christopher H L, Peter B R, Rebecca A M, et al. Why are evergreen leaves so contrary about shade. Trends in Ecology and Evolution, 2008, 23(6): 299-303.
[77]  Meziane D, Shipley B. Interacting determinants of specific leaf area in 22 herbaceous species: effects of irradiance and nutrient availability. Plant, Cell & Environment, 1999, 22: 447-459.
[78]  Li Y L, Cui J H, Su Y Z. Specific leaf area and leaf dry matter content of some plants in different dune habitats. Acta Ecologica Sinica, 2005, 25(2): 301-304.
[79]  Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum. Nature, 2004, 428: 821-827.
[80]  Mao W, Li Y L, Zhao X Y, et al. Effect of Caragana microphylla on leaf traits of Setarria viridis in Horqin sandy land. Acta Prataculturae Sinica, 2009, 18(6): 144-150.
[81]  Liu F M, Jin Y, Zhang X J. Preliminary study on “fertile island” effect about Haloxylon ammodendron. Journal of Arid Land Resources and Environment, 1999, 13(3): 86-88.
[82]  Xiong X G, Han X G. Spatial heterogeneity in soil carbon and nitrogen resources, caused by Caragana microphylla, in the thicketization of semiarid grassland, Inner Mongolia. Acta Ecologica Sinica, 2005, 25(7): 1678-1683.
[83]  Perez F L. Plant—induced spatial patterns of surface soil properties near caulescent Andean rosettes.Plant and Soil, 1995, 68: 101-121.
[84]  刘建军, 陈海滨, 田呈明, 等. 秦岭火地塘林区主要树种根际微生态系统土壤性状研究. 土壤侵蚀与水土保持学报, 1998, 4(3): 52-56.
[85]  熊小刚, 韩兴国. 生态学中的新领域-沃岛效应与草原灌丛化. 植物杂志, 2003, (2): 45-46.
[86]  张宏, 史培军, 郑秋红. 半干旱地区天然草原灌丛化与土壤异质性关系研究进展. 植物生态学报, 2001, 25(3): 366-370.
[87]  王义凤, 雍世鹏, 刘钟龄. 内蒙古草地. 中国科学院内蒙古-宁夏综合考察队. 内蒙古植被. 北京: 科学出版社, 1985: 207-215.
[88]  裴世芳, 傅华, 陈亚明, 等. 放牧和围封下霸王灌丛对土壤肥力的影响. 中国沙漠, 2004, 24(6):763-767.
[89]  苏永中, 赵哈林, 张铜会. 几种灌木、半灌木对沙地土壤肥力影响机制的研究.应用生态学报, 2002, 13(7): 802-806.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133