Chen S Y, Chen Z Y, Zhang R S. Screening and evaluation of antagonistic bacteria against Rhizoctonia solani. Acta Phytophylacica Sinica, 2013, 40(3): 211-218.
[2]
Vanitha S, Ramjegathesh R. Bio control potential of Pseudomonas fluorescens against coleus root rot disease. Plant Pathology Microbiology, 2014, 216(5): 2.
[3]
Jamali F, Sharifi-Tehrani A, Lutz M P, et al. Influence of host plant genotype, presence of a pathogen, and coinoculation with Pseudomonas fluorescens strains on the rhizosphere expression of hydrogen cyanide- and 2, 4-diacetylphloroglucinol biosynthetic genes in P. fluorescens biocontrol strain CHA0. Microbial Ecology, 2009, 57(2): 267-275.
[4]
Sajeli B A, Basha S A, Raghavendra G, et al. Isolation and characterization of antimicrobial cyclic dipeptides from Pseudomonas fluorescens and their efficacy on sorghum grain mold fungi. Chemistry & Biodiversity, 2014, 11(1): 92-100.
[5]
Yang M M, Wen S S, Mavrodi D V, et al. Biological control of wheat root diseases by the CLP-producing strain Pseudomonas fluorescens HC1-07. Phytopathology, 2014, 104(3): 248-256.
[6]
Yao T, Pu X P, Zhang D G, et al. Associative nitrogen- fixing bacteria in the rhizosphere of Avena sativa in an alpine region Ⅲ Effect on Avena sativa growth and quantification of nitrogen fixed. Acta Prataculturae Sinica, 2004, 13(5): 101-105.
[7]
Yao T, Long R J, Wang G, et al. Isolation and characteristics of associative symbiotic nitrogen bacteria from rhizosphere of wheat in saline soil in Lanzhou area. Acta Pedologica Sinica, 2004, 41(3): 444-448.
[8]
Yao T, Wang G, Chen B J, et al. Enumeration of associative symbiotic nitrogen fixation bacteria in the rhizoshpere of wheat in saline soil. Chinese Journal of Soil Science, 2004, 35(4): 479-482.
[9]
Yao T, Zhang D G, Long R J, et al. Study on associative nitrogen bacteria in rhizosphere of oat in alpine region. In Biological Nitrogen Fixation Sustainable Agriculture and the Environment. Proceedings of 14th International Nitrogen Fixation Congress, Springer. the Netherlands, 2005.
[10]
Yao T. Research progress on associative nitrogen fixation (ANF) within Gramineae rhizospheres. Chinese Grass Crops Pathology. Beijing: Ocean Press, 2003: 231-239.
[11]
Dubuis C, Keel C, Haas D. Dialogues of root-colonizing biocontrol pseudomonads. New Perspectives and Approaches in Plant Growth-Promoting Rhizobacteria Research. Springer Netherlands, 2007: 311-328.
[12]
Chi S Y, He Y Q, Han Z M, et al. Studies on complex infecting of pinewood nematodes and the bacterium carried by it. Journal of Fujian College of Forestry, 2008, 28(1): 92-96.
[13]
Wang R. The Identification on the Secondary Invader and Agent of Tobacco Physiological Disease. Fujian: Fujian Agriculture and Forestry University, 2013.
[14]
Xu Z W, Li X Y, Yang X S, et al. Analysis of spoilage ability of donimant spoilage bacterial from stored chilled Cyprinus carpio and Oreochromis niloticus. Food Science, 2012, 33(4): 243-246.
[15]
Du Z J, Huang X L, Deng Y Q, et al. Isolation and identification of Pseudomonas fluorescens from Andrias davidianus. Journal of Sichuan Agricultural University, 2011, 29(1): 103-107.
[16]
Deng X W, Xie Z X, Liu J B, et al. Isolation and identification of Pseudomonas fluorescens in tilapia. Guangxi Agricultural Sciences, 2010, 41(6): 612-615.
[17]
Chen L P, Hou F J, Zhang D J, et al. Distribution characteristics of Pseudomonas in Ningbo coastal sewage outlets. Oceanologia Et Limnologia Sinica, 2013, 44(4): 926-930.
Huang Y, Zhang Z Y, Huang L L, et al. Opinions on definition, analysis of advantages and disadvantages and integrated management of plant diseases. Plant Protection, 2009, 35(1): 97-101.
[38]
Yan W R, Zhao T C, Xiao T B, et al. Applications of biocontrol bacterial in plant disease control. Genomics and Applied Biology, 2013, 32(4): 533-539.
[39]
Liu Q, Liu Y, He Y Q, et al. Review of biological control of plant diseases. Anhui Agricultural Science Bulletin, 2012, 18(7): 67-69.
[40]
Kerr A. Biological control of crown gall through production of agrocin 84. Plant Disease, 1980, 64: 25-30.
[41]
He L Y. Advances of research and application of bacteria in biological control of plant diseases. Chinese Journal of Biological Control, 1985, 1(3): 28-31.
[42]
Ma C T, Hu Q, Yang D K. Progress of the prevention and treatment of the profitable soil microorganism for plants diseases. Shangdong Science, 2007, 20(6): 61-67.
[43]
Buchanan R E, Bergey D H. Bergey’s Manual of Determinative Bacteriology, 8th Chinese edn. Beijing: Chinese Science Press, 1984.
[44]
Dong X Z, Cai M Y. Common Bacterial System Identification Manual. Beijing: Chinese Science Press, 2002, 162-166.
[45]
Tan Z J, Xiao L,Xie B Y, et al. Microecological functions of Pseudomonad. Acta Agriculturae Nucleatae Sinica, 2004, 18(1): 72-76.
[46]
Yang Y, Li Z, Gao L X, et al. The antibiotic metabilites genes of Pseudomonas fluorescens. China Biotechnology, 2012, 32(8): 100-106.
[47]
Almario J, Prigent-Combaret C, Muller D, et al. Effect of clay mineralogy on iron bioavailability and rhizosphere transcription of 2, 4-diacetylphloroglucinol biosynthetic genes in biocontrol Pseudomonas protegens. Molecular Plant-Microbe Interactions, 2013, 26(5): 566-574.
[48]
Wang P, Li H, Qiu Y X, et al. Siderophores produced by Pseudomonas fluorescens P13 against Sclerotinia sclerotiorum. Journal of Shanghai Normal University (Natural Sciences), 2010, 39(2): 200-203.
[49]
Barahona E, Navazo A, Martínez-Granero F, et al. Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens. Applied and Environmental Microbiology, 2011, 77(15): 5412-5419.
[50]
Nagarajkumar M, Jayaraj J, Muthukrishnan S, et al. Detoxification of oxalic acid by Pseudomonas fluorescens strain PfMDU2: implications for the biological control of rice sheath blight caused by Rhizoctonia solani. Microbiological Research, 2005, 160(3): 291-298.
[51]
Diyansah B, Aini L Q, Hadiastono T. The effect of PGPR (Plant Growth Promoting Rhizobacteria) Pseudomonas fluorescens and Bacillus subtilis on leaf mustard plant (Brassica juncea L.) infected by TuMV (turnip mosaic virus). Journal of Tropical Plant Protection, 2014, 1(1): 30-38.
[52]
Yuan L L. Optimization for Fermentation Conditions of Phenazing-1-carboxylic Acid in Genetically Engineered Bacteria M18Q. Shanghai: Shanghai Jiao Tong University, 2008.
[53]
Zhang W Q, Nie M, Xiao M. Advances in biocontrol mechanism of Pseudomonas fluorescens. Journal of Biology, 2007, 24(3): 9-11, 24.
[54]
Yang H J, Tan Z J, Xiao Q M, et al. Biocontrol functions of Pseudomonad. Chinese Journal of Eco-Agriculture, 2004, 12(3): 158-161.
[55]
Haas D, Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Microbiology, 2005, 3(4): 7-319.
[56]
Lv Z B, Li M Q, Hui N N, et al. Pathogen identification of water spot disease on Chinese angelica in Dingxi city of Gansu Province and pathogenicity test. Plant Protection, 2013, 39(2): 45-49.
[57]
Li H B, Peng J, Bao Y, et al. Preliminary studies on isolation and screening of Fluorescent Pseudomonas spp. for biocontrol Sclerotinia Sclerotiorum. Chinese Agricultural Science Bulletin, 2005, 21(11): 334-337.
[58]
Zhang P, Li L, Wang Z X, et al. Screening & identification of fine anti-tomato-gray-mold (Botrytis cinerea) strain. Journal of Microbiology, 2012, 32(6): 42-46.
[59]
Dong G J, Li W Y, Liu C P, et al. Identification and characterization of antagonistic bacterial strain P-72-10 against Phytophthora nicotianae. Acta Phytopathologica Sinica, 2012, 42(3): 297-305.
[60]
Wang X J, Bu C Y, Jin Y S, et al. Identification and inhibitory effects of antagonistic bacteria against strawberry root rot (Fusarium oxysporum). Acta Horticulturae Sinica, 2011, 38(9): 1657-1666.
[61]
Li H L. Screening of Pseudomonas fluorescens and Biocontrol of Alternaria alternata. Heilongjiang: Heilongjiang Bayi Agricultural University, 2008.
[62]
Li A R, An D R. Experiments on the screening of two antagonistic strains of Pseudomonas fluorescent in the laboratory. Journal of Microbiology, 2003, 23(4): 11-13.
[63]
Lau J, Tran C, Licari P, et al. Development of a high cell density fedback bioprocess for the heterologous production of 6-deoxyery thronolide B in E. coli. Journal of Biotechnology, 2004, 110:95-103.
[64]
Tang C M, Chen X R, Yao T, et al. Determination of the optimum cultural condition for nine PGPR strains. Grassland and Turf, 2005, (3): 27-30.
[65]
Farhangi M B, Safari Sinegani A A, Mosaddeghi M R, et al. Survival of Pseudomonas fluorescens CHA0 in soil; impact of calcium carbonate and temperature. Arid Land Research and Management, 2014, 28(1): 36-48.
[66]
Zan J Q, Lin W T. Screening and identification of a kind of flocculants-producing bacteria and its cultural conditions. Microbiology, 2010, 37(4): 547-552.
[67]
Zhao S L, Ren F E, Liu J L, et al. Screening, identification and optimization of fermentation conditions of an antagonistic actinomycetes strain to Setosphaeria turcica. Acta Microbiologica Sinica, 2012, 52(10): 1228-1236.
[68]
Yanes M L, De La Fuente L, Altier N, et al. Characterization of native fluorescent Pseudomonas isolates associated with alfalfa roots in Uruguayan agroecosystems. Biological Control, 2012, 63(3): 287-295.
[69]
Lagzian A, Saberi Riseh R, Khodaygan P, et al. Introduced Pseudomonas fluorescens VUPf5 as an important biocontrol agent for controlling Gaeumannomyces graminis var. tritici the causal agent of take-all disease in wheat. Archives of Phytopathology and Plant Protection, 2013, 46(17): 2104-2116.
[70]
Liu N, Wang K. Isolation and identification of antagonistic ginger endophytic bacteria for Aspergillus niger. Chinese Agricultural Science Bulletin, 2013, 29(4): 57-61.
[71]
Wan X Q, Guo Z K, Yan P Q, et al. Screening of antagonistic strains to tobacco anthracnose. Microbiology, 2008, 35(11): 1727-1731.
[72]
Rong L Y, Yao T, Zhao G Q, et al. Screening of siderophore-producing PGPR bacteria and their antagonism against the pathogens. Plant Protection, 2011, 37(1): 59-64.
[73]
Shen L, Wang F, Yang J, et al. Control of tobacco mosaic virus by Pseudomonas fluorescens CZ powder in greenhouses and the field. Crop Protection, 2014, 56: 87-90.
[74]
Qiao C, Chen X, Zhang Y J, et al. Laboratory and field control effects of Pseudomonas fluorescens PF7-5 against Pseudomonas syringae pv. tabaci. Forest by Product and Speciality in China, 2010, 108(5): 18-20.
[75]
Li H L, Wan X Q, Yan P Q, et al. Antagonistic action of Pseudomonas fluorescens strain G20-9 to Alternaria alternate keissler. Tobacco Science & Technology, 2008, 249(4): 56-59.
[76]
Gu J G, Fang D H, Li T F, et al. Mechanisms of Pseudomonas fluorescens RB-42 and RB-89 in biocontrol of Phytophthora parasitica var. nicotianae. Chinese Journal of Biological Control, 2004, 20(1): 76-78.
[77]
Bagheri N, Ahmadzadeh M, Heydari R. Effects of Pseudomonas fluorescens strain UTPF5 on the mobility, mortality and hatching of root-knot nematode Meloidogyne javanica. Archives of Phytopathology and Plant Protection, 2014, 47(6): 744-752.
[78]
Norabadi M T, Sahebani N, Etebarian H R. Biological control of root-knot nematode (Meloidogyne javanica) disease by Pseudomonas fluorescens (Chao). Archives of Phytopathology and Plant Protection, 2014, 47(5): 615-621.
[79]
Lingaiah S, Umesha S. Pseudomonas fluorescens inhibits the Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice. Canadian Journal of Plant Protection, 2013, 1(5): 147-153.
[80]
Agarwal S. Efficacy of Pseudomonas fluorescens and Bacillus subtilis against Fusarium oxysporum f sp capsici and Meloidogyne incognita of chilli. Xian: Sam Higginbottom Institute of Agriculture, Technology and Sciences, 2013.
[81]
Soesanto L, Mugiastuti E, Rahayuniati A R F, et al. Efficacy of Pseudomonas fluorescens P60 in organic liquid for suppresion of Sclerotium rolfsii in cucumber. Recent advances in biofertilizers and biofungicides (PGPR) for sustainable agriculture. Proceedings of 3rd Asian Conference on Plant Growth-Promoting Rhizobacteria (PGPR) and other Microbials, Manila, Philippines, 21-24 April, 2013. Asian PGPR Society for Sustainable Agriculture, 2013: 393-415.
[82]
Hua J, Li L L, Cheng H, et al. Isolation, identification and screening of antagonistic bacteria of the pathogenic fungi in Chinese chestnut from Luotian county. Chinese Agricultural Science Bulletin, 2013, 29(25): 102-107.
[83]
Jiang J Z, Liang T Y, Wang H Y, et al. Screening of antagonistic Pseudomonas fluorescens against Phytophthora infestans and disease control in vitro. Journal of Agricultural University of Hebei, 2013, 36(3): 72-76.
[84]
Zegeye E D, Santhanam A, Gorfu D, et al. Biological activity of Trichoderma viride and Pseudomonas fluorescens against Phytophthora infestans under greenhouse condition. Journal of Agricultural Technology, 2011, 7(6): 1589-1602.
[85]
Li H, Li H B, Bai Y, et al. The Use of Pseudomonas fluorescens P13 to control sclerotinia stem rot (Sclerotinia sclerotiorum) of oilseed rape. The Journal of Microbiology, 2011, 49(6): 884-889.
[86]
Etebarian H R, Sholberg P L, Eastwell K C, et al. Biological control of apple blue mold with Pseudomonas fluorescens. Canadian Journal of Microbiology, 2005, 51(7): 591-598.
[87]
Wang G, Yang Z W. Inhibitory action of Pseudomonas fluorescens P2-5 strain to Gaeumannomyces graminis var. tritici. Plant Protection, 2004, 30(4): 32-34.
[88]
González-Sánchez M , de Vicente A, Pérez-García A, et al. Evaluation of the effectiveness of biocontrol bacteria against avocado white root rot occurring under commercial greenhouse plant production conditions. Biological Control, 2013, 67(2): 94-100.
[89]
Sang M K, Shrestha A, Kim D Y, et al. Biocontrol of phytophthora blight and anthracnose in pepper by sequentially selected antagonistic rhizobacteria against phytophthora capsici. The Plant Pathology Journal, 2013, 29(2): 154-167.
[90]
Liu J L, Fang F, Shi X H, et al. Isolation and characterization of PGPR from the rhizosphere of the Avena sativa in saline-alkali soil. Acta Prataculturae Sinica, 2013, 22(2): 132-139.
[91]
Xi Q L, Yao T, Zhang D G. Effect of associative nitrogen fixation bacteria on Avena sativa growth. Acta Prataculturae Sinica, 2007, 16(3): 38-42.
[92]
Yao T, Yasmin S, Hafeez F Y. Potential role of rhizobacteria isolated from Northwestern China for enhancing wheat and oat yield. The Journal of Agricultural Science, 2008, 146: 49-56.
[93]
Yao T, Long R J, Zhang D G, et al. Isolation and characterization of plant growth promoting diazotrophs from the rhizosphere of wheat growing in saline soils in Northwestern China. 57th Annual conference of Canadian Society of Microbiologists. June 17-20, 2007.
[94]
Yao T. Research progress of plant growth promoting Rhizobacteria. Grassland and Turf, 2002, (4): 3-5.
[95]
Han H W, Sun L N, Yao T, et al. Effects of bio-fertilizers with different PGPR strain combinations on yield and quality of alfalfa. Acta Prataculturae Sinica, 2013, 22(5): 104-112.
[96]
Bi J T, Ma P, Yang Z W, et al. Isolation of endophytic fungi from the medicinal plant Tamarix chinensis and their microbial inhibition activity. Acta Prataculturae Sinica, 2013, 22(3): 132-138.
[97]
Hol W H, Bezemer T M, Biere A. Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens. Frontiers in Plant Science, 2013, 4(81): 1-9.
[98]
Pan J, Mao Z S, Li X, et al. Preliminary study on pomegranate wilt management by employing Bacillus subtilis and Pseudomonas florescence isolates. Journal of Yunnan Agricultural University, 2013, 28(1): 27-31.
[99]
Mao Z S, Ma Q Y, Huang Q, et al. Antagonism of different mix proportions of bacteria strains to Fusarium solani. Journal of Yunnan Agricultural University, 2005, 20(1): 20-22.
[100]
Marimuthu S, Ramamoorthy V, Samiyappan R, et al. Intercropping system with combined application of azospirillum and Pseudomonas fluorescens reduces root rot incidence caused by Rhizoctonia bataticola and increases seed cotton yield. Journal of Phytopathology, 2013, 161(6): 405-411.
[101]
Mukherjee A, Sinha B S. Pseudomonas fluorescens mediated suppression of Meloidogyne incognita infection of cowpea and tomato. Archives of Phytopathology and Plant Protection, 2013, 46(5): 607-616.
[102]
Ran L X, Xiang M L, Li Z N, et al. Control of Eucalypt bacterial wilt by combination of two different suppression mechanisms. Journal of Central South University of Forestry & Technology, 2008, 28(4): 87-91.
[103]
Niu S G, Jiang S R, Tang W H. Positive regulations of Pseudomonas fluorescens by carbendazim and its application in controlling cotton Verticillium wilt. Acta Phytophylacica Sinica, 1999, 26(2): 171-176.
[104]
Zhang W Q, Nie M, Wang H, et al. Effect of metalions on cell growth and antibiotic production of Pseudomonas fluorescens P13. Journal of Shanghai Normal University (Natural Sciences), 2007, 36(2): 77-81.
[105]
Li X M, Hu B S, Xu Z G, et al. Interaction among antagonistic Bacillus spp. strains and their suppression against rice sheath blight. Acta Phytophylacica Sinica, 2003, 30(3): 273-278.
[106]
Haas D, Keel C.Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annual Review of Phytopathology, 2003, 41: 117-153.
[107]
Fischer S, Príncipe A, Alvarez F, et al. Fighting Plant Diseases Through the Application of Bacillus and Pseudomonas Strains. Symbiotic Endophytes. Springer Berlin Heidelberg, 2013: 165-193.
[108]
Nagel K, Schneemann I, Kajahn I, et al. Beneficial effects of 2, 4-diacetylphloroglucinol-producing pseudomonads on the marine alga Saccharina latissima. Aquatic Microbial Ecology, 2012, 67(3): 239.
[109]
Maurhofer M, Baehler E, Notz R, et al. Cross talk between 2, 4-diacetylphloroglucinol-producing biocontrol pseudomonads on wheat roots. Applied and Environmental Microbiology, 2004, 70(4): 1990-1998.
[110]
Souza J T. Distribution Diversity and Activity of Antibiotic-producing Pseudomonas spp. The Netherland Wageningen University, 2002.
[111]
Tran H, Ficke A, Asiimwe T, et al. Role of the cyclic lipopeptide massetolide A in biological control of Phytophthpra infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytologist, 2007, 175(4): 731-742.
[112]
Li J, An D R, Li A R, et al. Isolation, purification, and structural characterization of antibiotic substance from Pseudomonas fluorescens AbIII745-6. Journal of Microbiology, 2008, 28(2): 11-14.
[113]
Asadhi S, Bhaskara R B, Sivaprasad Y, et al. Characterisation, genetic diversity and antagonistic potential of 2, 4-diacetylphloroglucinol producing Pseudomonas fluorescens isolates in groundnut-based cropping systems of Andhra Pradesh, India. Archives of Phytopathology and Plant Protection, 2013, 46(16): 1966-1977.
[114]
Arseneault T, Goyer C, Filion M. Phenazine production by Pseudomonas sp. LBUM223 contributes to the biological control of potato common scab. Phytopathology, 2013, 103(10): 995-1000.
[115]
Ran L X, Xiang M L, Zhou B. Siderophores are the main determinants of Fluorescent Pseudomonas strains in suppression of grey mould in Eucalyptus urophylla. Acta Phytopathologica Sinica, 2005, 35(1): 6-12.
[116]
Wei H L, Zhou H Y, Zhang L Q, et al. Experimental evidence on the functional agent of 2, 4-diacetylphloroglucinol in biocontrol activity of Pseudomonas fluorescens 2P24. Acta Microbiologica Sinica, 2004, 44(5): 663-666.
[117]
Lagzian A, Saberi R R, Khodaygan P, et al. Biocontrol performance evaluation of spontaneous mutants of Pseudomonas fluorescens VUPf5 generated during proliferation. Archives of Phytopathology and Plant Protection, 2013, 46(17): 2087-2095.
[118]
Kidarsa T A, Shaffer B T, Goebel N C, et al. Genes expressed by the biological control bacterium Pseudomonas protegens Pf-5 on seed surfaces under the control of the global regulators GacA and RpoS. Environmental Microbiology, 2013, 15(3): 716-735.
[119]
Liu J C, Zhang W, Wu X G, et al. Effcet of retS gene on biosynthesis of 2, 4-diacetylphloroglucinol in Pseudomonas fluorescens 2P24. Acta Microbiologica Sinica, 2013, 53(2): 118-126.
[120]
Bottiglieri M, Keel C. Characterization of PhlG, a hydrolase that specifically degrades the antifungal compound 2, 4-diacetylphloroglucinol in the biocontrol agent Pseudomonas fluorescens CHA0. Applied and Environmental Microbiology, 2006, 72(1): 418-427.
[121]
Lugtenberg B, Girard G. Role of Phenazine-1-Carboxamide Produced by Pseudomonas chlororaphis PCL1391 in the Control of Tomato Foot and Root Rot. Microbial Phenazines. Springer Berlin Heidelberg, 2013: 163-175.
[122]
Perneel M, Heyrman J, Adiobo A, et al. Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. Journal of Applied Microbiology, 2007, 103(4): 1007-1020.
[123]
Yao T. Associative nitrogen-fixing bacteria in the rhizosphere of Avena sativa in an alpine regionⅡPhosphate-solubilizing power and auxin production. Acta Prataculturae Sinica, 2004, 13(3): 85-90.