Zhang L Y. Feed Analysis and Feed Quality Detection Technology. Beijing: China Agricultural University Press, 2002: 45-80.
[2]
Yang X Y, Cai Y, Fu J, et al. Karyotypes of maize and its relatives-teosinte. Scientia Agricultura Sinica, 2011, 44(7): 1307-1314.
[3]
Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980, 8(19): 4321-4326.
[4]
Tang Q L, Rong T Z. Study on the relationships of maize Inbred 48-2, wild maize and its hybrid (48-2×wild maize) by isoperoxidase electrophoretogram. Journal of Sichuan Agricultural University, 2003,21(1): 10-17.
[5]
Zhang H Q, Zhou Y H, Zheng Y L, et al. Morphology and cytology of intergeneric hybrids between Hystrix duthiei ssp. longearistata and Psathyrostachys huashanica (Poaceae: Triticeae). Acta Phytotaxonomica Sinica, 2002, 40(5): 421-427.
[6]
Xue D D, Guo H L, Zheng Y Q, et al. Hybrid identification of progenies of Zoysia crosses by SRAP marker. Acta Prataculturae Sinica, 2009, 18(1): 72-79.
[7]
Deng Y, Jiang J, Chen S, et al. Combination of multiple resistance traits from wild relative species in Chrysanthemum via trigeneric hybridization. PLoS One, 2012, 7(8): 1-15.
[8]
Yu Z, Xie R, Yu X X, et al. SSR analysis of sorghum-sudangrass new strains with low hydrocyanic acid content. Acta Prataculturae Sinica, 2014, 23(1): 223-228.
[9]
Mukai Y, Nakahara Y, Yamamoto M. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome, 1993, 36(3): 489-494.
[10]
Kruppa K, Sepsi A, Szakacs E, et al. Characterization of a 5HS-7DS.7DL wheat-barley translocation line and physical mapping of the 7D chromosome using SSR markers. Journal of Applied Genetics, 2013, 54(3): 251-258.
[11]
Sanchez-Moran E, Benavente E, Orellana J. Simultaneous identification of A, B, D and R genomes by genomic in situ hybridization in wheat-rye derivatives. Heredity, 1999, 83(3): 249-252.
[12]
Li C, Zhang D, Ge S, et al. Differentiation and inter-genomic relationships among C, E and D genomes in the Oryza officinalis complex (Poaceae) as revealed by multicolor genomic in situ hybridization. Theoretical and Applied Genetics, 2001, 103(2-3): 197-203.
[13]
Maluszynska J, Hasterok R. Identification of individual chromosomes and parental genomes in Brassica juncea using GISH and FISH. Cytogenetic and Genome Research, 2005, 109(1-3): 310-314.
[14]
Zhang H J, Wang H G, Liu S B, et al. Advances of wheat polygeneric hybrids. Journal of Shangdong Agricultural University, 2000, 31(3): 337-344.
[15]
Li Y P, Jiang B, Li Y X, et al. Molecular cytogenetic detection of offspring in wheat trigeneric hybridization. Molecular Plant Breeding, 2013, 11(2): 163-167.
[16]
Zhao J X, Fu J, Wu J, et al. Studies on cytogenetics and morphology of the progenies of trigeneric hybridization involving Triticum, Leymus and Thinopyrum. Acta Agriculturae Boreali-Occidentalis Sinica, 2001, 10(4): 20-24.
[17]
Zhu W Y, Liu X C, Fang W M, et al. Genetic presentation of BC1 between ‘Zhongshanjingui’ and ‘Zhongshanjingui’ ×Ajania przewalskii. Scientia Agricultura Sinica, 2012, 45(18): 3812-3819.
[18]
Li X L, Chen L. Breeding for triploids of Salvia miltiorrhiza and its sustainable utilization. Chinese Traditional and Herbal Drugs, 2012, 43(2): 375-379.
[19]
Liu Q C. Genetics. Beijing: Science Press, 2007.
[20]
Gan L, Yu X X, Yu Z, et al. A study on main agronomic trasits of yield and quality of clone lines of Solanum truberosum hybrids F1. Acta Prataculturae Sinica, 2013, 22(4): 312-318.
Gresset S, Westermeier P, Rademacher S, et al. Stable carbon isotope discrimination is under genetic control in the C4 species maize with several genomic regions influencing trait expression. Plant Physiology, 2014, 164(1): 131-143.
[32]
Tang Q L, Rong T Z, Song Y C, et al. Introgression of perennial teosinte genome into maize and identification of genomic in situ hybridization and microsatellite markers. Crop Science, 2005, 45(2): 717-721.
[33]
Tang Q L, Li W C, Song Y C, et al. The production and multi-color genomic in situ hybridization identification of maize-Z. perennis substituted material. Acta Genetica Sinica, 2004, 31(4): 340-344.
[34]
Ren Y, Chen R Q, Tang Q L, et al. Growth dynamics and optimum harvest period of a novel forage maize. Acta Agronmica Sinica, 2007, 33(8): 1360-1365.
[35]
Tang Q L, Wang P, Lu Y L, et al. Genetic relationship analysis of Zea species using RAPD markers. Acta Prataculturae Sinica, 2009, 18(4): 154-160.
[36]
Li D Y, Guo L Q. Research and utilization of wild relatives of maize. Journal of Maize Sciences, 2001, 9(2): 11-13.
[37]
Blakey C A, Costich D, Sokolov V, et al. Tripsacum genetics: from observations along a river to molecular genomics. Maydica, 2007, 52(1): 81-99.
[38]
Singh H, Bhardwaj B L, Gupta B K. Inheritance of forage quality and other agronomic traits in maize, teosinte and their hybrids. Crop Improvement, 2004, 31(1): 25-30.
[39]
Feng Y C, Tang Q L, Rong T Z. Comparisons on forage yield and feeding value between Zea mexicana, Yucao2 and Chuandan14-Zea mexicana Hybrid. Journal of Maize Sciences, 2011, 19(3): 68-72.
[40]
Shavrukov Y N, Sokolov V, Langridge P, et al. Interspecific hybrid, Zea mays L.×Tripsacum dactyloides L., a new fodder crop with large silage biomass production under abiotic stresses: Proceedings of the 13th Australian Agronomy Conference. Perth: Australian Centre for Plant Functional Genomics, 2006.
[41]
Kindiger B, Sokolov V, Khatypova I V. Evaluation of apomictic reproduction in a set of 39 chromosome maize-Tripsacum backcross hybrids. Crop Science, 1996, 36(5): 1108-1113.
[42]
Su Y G. Molecular Cytogenetic Study of the Tri-species Hybrid Involving Maize, Tripsacum dactyloides L. and Zea perennis. Yaan: Sichuan Agricultrual University, 2009.