全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

亚精胺对水分胁迫下白三叶脯氨酸代谢、抗氧化酶活性及其基因表达的影响

DOI: 10.11686/cyxb20150418, PP. 148-156

Keywords: 白三叶,亚精胺,水分胁迫,抗氧化酶,基因表达,脯氨酸

Full-Text   Cite this paper   Add to My Lib

Abstract:

以广泛栽培的“拉丁诺”白三叶为供试材料,对其在不同水分胁迫处理下叶片相对含水量、活性氧成分、膜脂过氧化产物、抗氧化酶活性、脯氨酸含量及其代谢酶活性等生理指标进行测定,并利用RT-PCR技术分析4种抗氧化酶基因在不同胁迫条件下的表达特性,分析外源亚精胺缓减水分胁迫的效应。结果表明,水分胁迫下白三叶叶片相对含水量逐步降低,活性氧和丙二醛含量不断升高,外源亚精胺能显著提高胁迫下叶片相对含水量,有效降低活性氧和膜脂过氧化产物的积累;外源亚精胺使水分胁迫下白三叶抗氧化酶活性和基因表达量发生改变,提高了水分胁迫下白三叶叶片超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)和抗坏血酸过氧化酶(APX)基因的表达从而提高抗氧化酶活性,缓解了水分胁迫造成的氧化胁迫伤害;外源亚精胺提高了脯氨酸合成代谢关键酶Δ’-吡咯啉-5-羧酸合成酶(P5CS)和分解代谢关键酶脯氨酸脱氢酶(ProDH)活性,促进了水分胁迫下脯氨酸的代谢,但对脯氨酸合成代谢鸟氨酸途径中关键酶——鸟氨酸转氨酶(OAT)没有影响。外源亚精胺能有效提高白三叶的抗水分胁迫能力,这与亚精胺诱导了胁迫下白三叶抗氧化酶基因表达,提高抗氧化酶活性和促进脯氨酸的代谢从而减轻由水分胁迫造成的氧化伤害、稳定了细胞膜系统及提高渗透调节能力密切相关。

References

[1]  Dhindsa R S, Dhindsa P P, Thorpe T A. Leaf senescence: correlated with increased leaves of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 1981, 32: 93-101.
[2]  Giannopolities C N, Ries S K. Superoxide dismutase: I. Occurrence in higher plants. Plant Physiology, 1977, 59: 309-314.
[3]  李州, 彭燕, 苏星源. 不同叶型白三叶抗氧化保护及渗透调节生理对干旱胁迫的响应. 草业学报, 2013, 22(2): 257-263. 浏览
[4]  周小梅, 赵运村, 周朴华. 水分胁迫下水稻幼苗多胺含量变化与抗旱性的关系. 湖南农业大学学报(自然科学版), 2010, 36(1): 17-21.
[5]  李璟, 胡晓辉, 郭世荣. 外源亚精胺对根际低氧胁迫下黄瓜幼苗根系多胺含量和抗氧化酶活性的影响. 植物生态学报, 2006, 30(1): 118-123.
[6]  宋维贤, 杜红阳, 刘怀攀, 等. 亚精胺对渗透胁迫下玉米幼苗生长和有机渗透调节物质的影响. 西北农业学报, 2010, 19(7): 66-70.
[7]  种培芳, 苏世平, 李毅, 等. 不同地理种源红砂幼苗对PEG胁迫的生理响应. 草业学报, 2013, 22(1): 183-192. 浏览
[8]  李朝周, 左丽萍, 李毅, 等. 两个海拔分布下红砂叶片对渗透胁迫的生理响应. 草业学报, 2013, 22(1): 176-182. 浏览
[9]  Kasukabe Y, He L, Nada K, et al. Overexpression of spermidine synthase enhances tolerance to multiple environmental stress and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant & Cell Physiology, 2004, 45: 712-722.
[10]  Sung M S, Chow T J, Lee T M. Polyamine acclimation alleviates hypersalinity-induced oxidative stress in a marine green macroalga, Ulva fasciata, by modulation of antioxidative enzyme gene. Journal of Phycology, 2011, 47(3): 538-547.
[11]  Aryadeep R, Supratim B, Dibyendu N S. Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. Journal of Plant Physiology, 2011, 168: 317-328.
[12]  Jinn C Y, Cheng W L, Denise Y T F, et al. Waterlogging tolerance of welsh onion (Allium fistulosum L.) enhanced by exogenous spermidine and spermine. Plant Physiology and Biochemistry, 2009, 47: 710-716.
[13]  Serafini-Fracassini D, Di S A, Del D S. Spermine delays leaf senescence in Lactuca sativa and prevents the decay of chloroplast photosystems. Plant Physiology and Biochemistry, 2010, 48: 602-611.
[14]  Song W X, Du H Y, Li H P, et al. Effects of spermidine on organic osmoregulation substance in leaves of maize seedling under osmotic stress. Acta Agriculturae Boreli-occidentalis is Sinica, 2010, 19(7): 66-70.
[15]  Velarde-Buendia A M, Shabala S, Cvikrova M, et al. Salt sensitive and salt-tolerant barley varieties differ in the extent of potentiation of the ROS-induced K+ efflux by polyamines. Plant Physiology and Biochemistry, 2012, 61: 18-23.
[16]  Barrs H D, Weatherley P E. A re-examination of the relative turgidity techniques for estimating water deficits in leaves. Australian Journal of Biological Sciences, 1962, 15: 413-428.
[17]  Elstner E F, Heupel A. Inhibition of nitrite formation from hydroxylammoniumchloride: a simple assay for superoxide dismutase. Analytical Biochemistry, 1976, 70: 616-620.
[18]  Uchida A, Andre T I, Takashi H. Effects of hydrogen peroxide and nitricoxideon both salt and heat stress tolerance in rice. Plant Science, 2002, 163: 515-523.
[19]  Chance B, Maehly A C. Assay of catalase and peroxidase. Methods in Enzymology, 1955, 2: 764-775.
[20]  Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 1981, 22(5): 867-880.
[21]  Bates S, Waldren R P, Teare I D. Rapid determination of the free proline in water stress studies. Plant Soil, 1973, 39: 205-208.
[22]  Lu T S, Mazelis M. L-Ornithine: 2-oxoacid aminotransferase from squash (Cucurbita pepo L.) cotyledons. Plant Physiology, 1975, 55: 502-506.
[23]  Garcia-Rios M, Fujita T, LaRosa P C. Cloning of a polycistronic cDNA from tomato encoding γ-glutamyl kinase and γ-glutamyl phosphate reductase. Proceedings of National of Academy of Sciences, 1997, 94: 8249-8254.
[24]  Sanchez E, Lopez-Lefebre L R, Garcia P C, et al. Proline metabolism in response to highest nitrogen dosages in green bean plants (Phaseolus vulgaris L. cv. Strike). Journal of Plant Physiology, 2001, 158: 593-598.
[25]  Wen X P, Ban Y, Inoue H, et al. Aluminum tolerance in a spermidine synthase-overexpressiong transgenic European pear is correlated with the enhanced level of spermidine via alleviating oxidative status. Environmental and Experimental Botany, 2009, 66: 471-478.
[26]  He L X, Ban Y, Inoue H, et al. Enhancement of spermidine content and antioxidant capacity in transgentic pear shoots overexpressing apple spermidine synthase in response to salinity and hyperosmosis. Phytochemistry, 2008, 69: 2133-2141.
[27]  Wen X P, Ban Y, Inoue H, et al. Antisense inhibition of a spermidine synthase gene highlights the role of polyamines for stress alleviation in pear shoots subjected to salinity and cadmium. Environmental and Experimental Botany, 2011, 72: 157-166.
[28]  Duan J J, Li J, Guo S, et al. Exogenous spermidine affects polyamine metabolism in salinity-stressed Cucumis sativus roots and enhances short-term salinity tolerance. Journal of Plant Physiology, 2008, 165: 1626-1635.
[29]  Kubis J. Exogenous spermidine dfferentially alters activities of some scavenging system enzymes, H2O2 and superoxide radical levels in water-stressed cucumber leaves. Journal of Plant Physiology, 2008, 165: 397-406.
[30]  Aronova E E, Shevyakova N I, Sretsenko L A, et al. Cadaverine induced induction of superoxide dismutase gene express in Mesembryanthemum crystallium L.. Doklady of Biological Science, 2005, 403: 1-3.
[31]  Hiraga S, Ito H, Yamakawa H, et al. An HR-induced tobacco peroxidease gene is responsive to spermine, but not to salicylate, methyl jasmonate and ethaphon. Molecular Plant-Microbe Interactions, 2000, 13: 210-216.
[32]  Sudha G, Ravishankar G A. Involvement and interaction of various signaling compounds on the plant metabolic events during defense responses, resistance to stress factors, formation of secondary metabolites and their molecular aspects. Plant Cell Tissue Organ Cult, 2002, 71: 181-212.
[33]  Childs A C, Mehta D J, Germer E W. Polyamine-dependent gene expression. Cell and Moecularl Life Science, 2003, 60: 1394-1406.
[34]  Morgan J M. Osmoregulation and water stress in higher plants. Annual Review of Plant Physio1ogy, 1984, 35: 299-319.
[35]  Chong P F, Su S P, Li Y, et al. Physiological responses to PEG stress of Reaumuria soongorica seedlings form different geographical origins. Acta Prataculturae Sinica, 2013, 22(1): 183-192.
[36]  Li C Z, Zuo L P, Li Y, et al. Physiological responses in leaves of Reaumuria soongorica from different altitudes under osmotic stress. Acta Prataculturae Sinica, 2013, 22(1): 176-182.
[37]  Cramer G R, Ergul A, Grimplet J. Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Functional and Integrative Genomics, 2007, 7: 111-134.
[38]  Szabados L, Savoure A. Proline: a multifunctional amino acid. Trends in Plant Science, 2009, 15: 89-97.
[39]  Roychoudhury A, Basu S, Sengupta D N. Amelioration of salinity stress by exogenously applied spermidinne or spermine in three varieties of indica rice differing in their level of salt tolerance. Journal of Plant Physiology, 2011, 168: 317-328.
[40]  Kishor P B K, Sangam S, Amrutha R N, et al. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current Science, 2005, 88: 424-438.
[41]  Trovato M, Mattioli R, Costantino P. Multiple roles of proline in plant stress tolerance and development. Rendiconti Lincei, 2008, 19: 325-346.
[42]  朱树声, 宗树国, 吕炎, 等. 大兴安岭野生红三叶、白三叶草的分布、特性及利用前景. 内蒙古草业, 2003, 15(1): 21-22.
[43]  Zhu S S, Zong S G, Lv Y, et al. The distribution, characteristics and utilization prospects of wild red clover and white clover in Da Xinanling. Inner Mongolia Prataculture, 2003, 15(1): 21-22.
[44]  Li Z, Peng Y, Sun X Y. Physiological responses of white clover by different leaf types associated with anti-oxidative enzyme protection and osmotic adjustment under drought stress. Acta Prataculturae Sinica, 2013, 22(2): 257-263.
[45]  Mercer C F, Watson R N. Effects of nematicides and plant resistance on white clover performance and seasonal populations of nematodes parasitizing white clover in grazed pasture. The Journal of Nematology, 2007, 39: 298-304.
[46]  Zhou X M, Zhao Y C, Zhou P H. Relationship between change of polyamine contents and drought-resistance in rice seedlings under water stress. Journal of Hunan Agricultural University (Natural Sciences), 2010, 36(1): 17-21.
[47]  He L, Nada K, Kasukabe Y, et al. Enhanced susceptibility of photosynthesis to low-temperature photoinhibition due to interruption of chill-induced increase of sadenosylmethionine decarboxylase activity in leaves of spinach (Spinacia oleracea L.). Plant Cell Physiology, 2002, 43: 196-206.
[48]  Li J, Hu X H, Guo S R. Effect of exogenous spermidine on polyamine content and antioxidant enzyme activities in roots of cucumber seedlings under root-zone hypoxia stress. Journal of Plant Ecology, 2006, 30(1): 118-123.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133