全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

不同环境温度下沼液养分在土壤中的淋失模拟研究

DOI: 10.11686/cyxb20150407, PP. 57-65

Keywords: 沼液,土壤养分,淋溶,温度

Full-Text   Cite this paper   Add to My Lib

Abstract:

沼液因其养分利用率高,被广泛应用于农业生产中,而环境温度可通过影响土壤的物理化学性质,影响沼液养分的淋溶损失。试验采用土柱模拟法,研究了不同环境温度对土壤沼液养分淋溶的影响,旨在揭示不同季节土壤养分淋溶可能存在的差异,为生产中合理施用沼液提供理论依据。土柱规格为内径7.5cm、高20cm的聚氯乙烯(PVC)管,按每公顷施入0,130和260kgN,设置每土柱沼液灌溉总量为0,200和400mL。按当地年平均降雨量的70%计算实际浇灌量为1500mL,分5次每隔6d模拟不同降雨次数进行浇灌。沼液浇灌前用清水补足不足部分并混匀。土柱放置于20和30℃的温室培养,每次淋溶后收集土壤淋溶液,测定其全氮、硝态氮、铵态氮、全钾、全磷、速效磷和电导率。结果表明,施用沼液后淋溶液中氮、磷、钾淋失量较清水对照显著增大,其中40mL沼液水平下,全氮含量平均增加73%,全磷含量增加880%,全钾含量增加388%,且随着沼液用量的增加淋溶液中的养分浓度呈增加趋势。环境温度的提高增加了沼液养分在土壤中的淋溶损失,30℃时淋溶液中的硝态氮、全氮、全钾、全磷、速效磷含量及电导率整体高于20℃,其中全氮平均提高14.68%,全磷平均提高33.59%,全钾平均提高24.08%。整体而言,30℃下沼液养分较20℃时更易发生淋失。因此,在农业生产中,应适当减少夏季高温时的沼液施用次数,增加春秋季节施用次数,但沼液用量不要超过130kgN/hm2,防止沼液养分大量流失,污染周边环境。

References

[1]  Hollister C C, Bisogni J J, Lehmann J. Ammonium, nitrate, and phosphate sorption to and solute leaching from biochars prepared from corn stover (L.) and oak wood (spp.). Journal of Environmental Quality, 2013, 42(1): 137-144.
[2]  Zhang M Q, Chen F, Lin Q, et al. Effect of fertilization on nutrient leaching loss in garden soil. Plant Nutrition and Fertilizer Science, 2008, 14(2): 291-299.
[3]  Katz-Downie D S, Valiejo-Roman C M, Terentieva E I, et al. Towards a molecular phylogeny of Apiaceae subfamily Apioideae: additional information from nuclear ribosomal DNA ITS sequences. Plant Systematics and Evolution, 1999, 216(3-4): 167-195.
[4]  Long H Y, Li Y Z, Zhang W L, et al. K+ adsorption kinetics of fluvo-aquic and cinnamon soil under different temperature. Scientia Agricultura Sinica, 2004, 37(6): 878-885.
[5]  Downie S R, Plunkett G M, Watson M F, et al. Tribes and clades within Apiaceae subfamily Apioideae: the contribution of molecular data. Edinburgh Journal of Botany, 2001, 58(2): 301-330.
[6]  Du C W, Zhou J M, Avi Shaviv. Characteristics of potassium release from polymer-coated controlled-release fertilizer and its modeling. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(2): 18-22.
[7]  Plunkett G M, Lowry II P P. Relationships among “ancient araliads” and their significance for the systematics of Apiales. Molecular Phylogenetics and Evolution, 2001, 19(2): 259-276.
[8]  Jin J Y, Cheng M F, Huan S W. Release rates of non-exchangeable potassium in selected soils from northern China. Acta Pedologica Sinica, 1999, 36(2): 218-224.
[9]  颜丽, 李景明, 任颜笑. 农村沼气工程的共生效应. 农业工程学报, 2006, 22(S1): 89-92.
[10]  黄秀声, 黄勤楼, 杨信, 等. 浇施沼液对狼尾草植株硝酸盐累积及其氮素利用效率研究. 草业学报, 2012 , 21(3): 61-68.
[11]  Feng T, Downie S R, Yu Y, et al. Molecular systematics of Angelica and allied genera (Apiaceae) from the Hengduan Mountains of China based on nrDNA ITS sequences: phylogenetic affinities and biogeographic implications. Journal of Plant Research, 2009, 122(4): 403-414.
[12]  宋成芳, 单胜道, 张妙仙, 等. 禽畜养殖废弃物沼液的浓缩及其成分. 农业工程学报, 2011, 27(12): 256-259.
[13]  曹云, 常志州, 马艳, 等. 猪粪沼液防治辣椒疫病机理研究-沼液中铵与腐殖酸的作用. 中国生态农业学报, 2013, 21(9): 1119-1126.
[14]  尹亚丽, 邢学峰, 唐华, 等. 多花黑麦草草地对奶牛场沼液养分消纳能力的研究. 草业学报, 2013, 22(5): 333-338. 浏览
[15]  陈永杏. 猪场沼液农用生态环境效应研究. 北京: 中国农业科学院, 2012.
[16]  奚振邦, 王寓群, 杨佩珍. 中国现代农业发展中的有机肥问题. 中国农业科学, 2004, 37(12): 1874-1878.
[17]  肖辉林, 郑习健. 土壤温度上升对某些土壤化学性质的影响. 土壤与环境, 2000, 9(4): 316-321.
[18]  国秀丽. 温度和水分对土壤碳、氮转化影响的研究. 长春: 吉林农业大学, 2003.
[19]  杨佳佳, 李兆军, 梁永超, 等. 温度和水分对不同肥料条件下黑土磷形态转化的影响及机制. 植物营养与肥料学报, 2009, 15(6): 1295-1302.
[20]  国家环境保护总局编. 水和废水监测分析方法(第四版). 北京: 中国环境科学出版社, 2002: 254-281.
[21]  杨剑虹, 王陈林, 代亨林. 土壤农化分析与环境监测. 北京: 中国大地出版社, 2008: 18-75.
[22]  邓蓉, 陈玉成, 史秋萍. 模拟沼液淋溶灌溉对土壤下渗水的影响. 水土保持学报, 2013, 27(3): 68-71.
[23]  侯红雨. 温室滴灌条件下氮素转化规律研究. 北京: 中国农业科学院, 2002.
[24]  罗时石, 张浩, 葛才林, 等. 不同温度及灌水量对土壤硝态氮淋失动态研究. 核农学报, 1995, 9(S): 7-11.
[25]  刘健, 马履一, 贾忠奎, 等. 苗圃潮土氮肥淋溶特征. 东北林业大学学报, 2010, 38(5): 71-74.
[26]  邱兰兰, 石元亮, 任军. 温度对黑土形态及有效性影响. 土壤通报, 2007, 38(6): 1115-1117.
[27]  张奇春, 王光火. 应用离子交换树脂球研究温度对水稻土养分释放动态的影响. 中国水稻科学, 2003, 17(4): 76-79.
[28]  蔡景波, 丁学锋, 彭红云, 等. 环境因子及沉水植物对底泥磷释放的影响研究. 水土保持学报, 2007, 21(2): 151-154.
[29]  Wachendorf C, Taube F, Wachendorf M. Nitrogen leaching from N-15 labelled cow urine and dung applied to grassland on a sandy soil. Nutrient Cycling in Agroecosystems, 2005, 73(1): 89-100.
[30]  Drude O. Umbelliferae. In: Engler A, Prantl K. Die Natürlichen Pflanzenfamilien. Leipzig: Wilhelm Engelmann, 1897-1898.
[31]  Olson B M, Bennett D R, McKenzie R H, et al. Nitrate leaching in two irrigated soils with different rates of cattle manure. Journal of Environmental Quality, 2009, 38(6): 2218-2228.
[32]  Pimenov M G, Leonov M V. The Genera of the Umbelliferae: a Nomenclator. London: Royal Botanic Gardens, 1993.
[33]  Volf C A, Ontkean G R, Bennett D R, et al. Phosphorus losses in simulated rainfall runoff from manured soils of Alberta. Journal of Environmental Quality, 2007, 36(3): 730-741.
[34]  Hou H Y. Study on The Rules of Nitrogen Translation and Movement. Beijing: Chinese Academy of Agricultural Sciences Dissertation, 2002.
[35]  She M L, Pu F T, Pan Z H, et al. Apiaceae. Flora of China Editorial Committee. Flora of China (14). St. Louis, Missouri: Missouri Botanical Garden Press, 2005.
[36]  Agehara S, Warncke D D. Soil moisture and temperature effects on nitrogen release from organic nitrogen sources. Soil Science Society of America Journal, 2005, 69(6): 1844-1855.
[37]  Editorial Committee of flora of Chinese China Academy of Sciences. Flora Repubulicae Popularis Sinicae (volume fifty-fifth, the third section) . Beijing: Science Press, 1992.
[38]  Luo S S, Zhang H, Ge C L. The effect of different temperature and irrigation water on soil NO3-N leaching. Acta Agriculturae Nucleatae Sinica, 1995, 9(S): 7-11.
[39]  Hiroe M, Constance L. Umbelliferae of Japan. Berkeley. California: University of California Press, 1958.
[40]  Constance M L. North American Flora. New York: New York Botanical Garden Press, 1994.
[41]  Liu J, Ma L Y, Jia Z K, et al. Leaching characteristics of nitrogen in fluvo-aquic soil after applying urea. Journal of Northeast Forestry University, 2010, 38(5): 71-74.
[42]  Chapman P J, Williams B L, Hawkins A. Influence of temperature and vegetation cover on soluble inorganic and organic nitrogen in a spodosol. Soil Biology and Biochemistry, 2001, 33(7): 1113-1121.
[43]  Qiu L L, Shi Y L, Ren J. Effects of temperature on components and bioavailability of phosphorus in black soil. Chinese Journal of Soil Science, 2007, 38(6): 1115-1117.
[44]  Silveira M L, O’Connor G A. Temperature effects on phosphorus release from a biosolids-amended soil. Applied and Environmental Soil Science, 浏览
[45]  Zhang Q C, Wang G H. Research on effect of temperature on nutrient release of paddy soil by using ion-exchange resin capsules. Chinese Journal of Rice Science, 2003, 17(4): 76-79.
[46]  Cai J B, Ding X F, Peng H Y, et al. Impact of environmental factors and submerged plant on phosphate release from sediment. Journal of Soil and Water Conservation, 2007, 21(2): 151-154.
[47]  Yuan C Q, Shan R H. The taxonomic study of Angelica L and Ostericum Hoffm. of China. Nanjing: Bulletin of Nanjing Botanical Garden, 1983.
[48]  章明清, 陈防, 林琼, 等. 施肥对菜园土壤养分淋溶流失浓度的影响. 植物营养与肥料学报, 2008, 14(2): 291- 299.
[49]  龙怀玉, 李韵珠, 张维理, 等. 温度对潮土和褐土吸附动力学的影响. 中国农业科学, 2004, 37(6): 878-885.
[50]  Zhou J, Peng H, Downie S R, et al. A molecular phylogeny of Chinese Apiaceae subfamily Apioideae inferred from nuclear ribosomal DNA internal transcribed spacer sequences. Taxon, 2008, 57(2): 402-416.
[51]  杜昌文, 周建民, Avi Shaviv. 聚合物包膜肥料中钾素释放特征及其模拟. 农业工程学报, 2006, 22(2): 18-22.
[52]  金继运, 程明芳, 黄绍文. 我国北方主要土壤非交换性钾释放速率的研究. 土壤学报, 1999, 36(2): 218-224.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133