全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

土壤容重对野生香根草幼苗根系形态及其生物量的影响

DOI: 10.11686/cyxb20150425, PP. 214-220

Keywords: 土壤容重,野生香根草,根系形态,根系生物量

Full-Text   Cite this paper   Add to My Lib

Abstract:

香根草因其具有发达的根系而被许多国家用于水土保持,但紧实土壤影响根系的生长,而土壤容重与土壤紧实度密切相关。为了掌握粤西野生香根草对紧实土壤的适应状况,用人工土柱研究了容重分别为1.20g/cm3(D1.20)、1.35g/cm3(D1.35)和1.58g/cm3(D1.58)的土壤对其根系形态和生物量的影响。结果表明:1)随容重增大,根系和地上部生物量下降,根冠比降低,植株的根表面积、根长密度和根体积密度减小,而平均根直径增大。2)容重影响根系的空间分布,D1.20和D1.35处理的根系在上、下层分布较多,中间层分布少,表明粤西野生香根草具有深根型特性;高容重阻止根向下延伸,D1.58处理的根系主要分布0~6cm的土层内。3)D1.20和D1.35土壤的平均根直径随土层加深减小,而D1.58的则增加。本实验结果说明粤西野生香根草能耐较紧实(D1.35)的土壤,高紧实土壤(D1.58)虽然限制其生长,但对表土层根系的分布影响小。并就容重对粤西野生香根草固土护坡的影响进行了讨论。

References

[1]  Xia H P, Liu S Z. Study on screening for excellent ecotypes of Vetiveria zizanioides. Acta Prataculturae Sinica, 2003, 2: 97-105.
[2]  Bengough A G, Young I M. Root elongation of seedling peas through layered soil of different penetration resistances. Plant and Soil, 1993, 149: 129-139.
[3]  Rosolem C A, Schiochet M A, Souza L S, et al. Root growth and cotton nutrition as affected by liming and soil compaction. Communications in Soil Science and Plant Analysis, 1998, 29(1&2): 169-177.
[4]  Atwell B J. The effect of soil compaction on wheat during early tillering I.Growth, development and root structure. New Phytologist, 1990, 115: 29-35.
[5]  Materechera S A, Dexter A R, Alston A M. Penetration of very strong soils by seedling roots of different plant species. Plant and Soil, 1991, 135: 31-41.
[6]  Tracy S R, Black C R, Roberts J A, et al. Quantifying the impact of soil compaction on root system architecture in tomato (Solanum lycopersicum) by X-ray micro-computed tomography. Annals of Botany, 2012, 110(2): 511-519.
[7]  Lipiec J, Horn R, Pietrusiewicz J, et al. Effects of soil compaction on root elongation and anatomy of different cereal plant species. Soil and Tillage Research, 2012, 121: 74-81.
[8]  夏汉平, 敖惠修, 刘世忠. 香根草生态工程-实现可持续发展的生物技术. 生态学杂志, 1998, 17(6): 44-50.
[9]  夏汉平, 束文圣. 香根草和百喜草对铅锌尾矿重金属的抗性与吸收差异研究. 生态学报, 2001, 21(7): 1121-1129.
[10]  夏汉平, 王庆礼, 孔国辉. 垃圾污水的植物毒性和植物净化效果之研究. 植物生态学报, 1999, 23: 289-301.
[11]  夏汉平, 刘世忠. 香根草优良生态型筛选研究. 草业学报, 2003, 2: 97-105.
[12]  肖宏彬, 赵亮, 李珍玉, 等. 香根草根系的分布形态及抗拉强度试验研究. 中南林业科技大学学报, 2014, 34(3): 6-10.
[13]  刘金祥, 陈燕. 我国大陆唯一的大面积成群落分布的优良水土保持植物一香根草的用途与保护问题. 草业科学, 2002, 19(7): 13-16.
[14]  刘晚苟, 山仑. 不同土壤水分条件下容重对玉米生长的影响. 应用生态学报, 2003, 14(11): 1906-1910.
[15]  Mickovski S B, van Beek L P H. Root morphology and effects on soil reinforcement and slope stability of young vetiver (Vetiveria zizanioides) plants grown in semi-arid climate. Plant and Soil, 2009, 324(1-2): 43-56.
[16]  Xia H P, Ao H X, Liu S Z. The vetiver eco-engineering-a biological technique for realizing sustainable development. Chinese Journal of Ecology, 1998, 17(6): 44-50.
[17]  Paul N V, Yin K F, Michael B E, et al. Phytoremediation of heavy metal contaminated soils and water using vetiver grass. Handbook of Environmental Engineering, 2010, 11: 233-275.
[18]  Padmin D, Stephanie S, Pravin P, et al. Phytoremediation potential of vetiver grass for tetracycline. International Journal of Phytoremediation, 2013, 15(4): 343-351.
[19]  Xia H P, Shu W S. Resistance to and uptake of heavy metals by Vetiveria zizanioides and Paspalum notatum from lead/zinc mine tailings. Acta Ecologia Sinica, 2001, 21(7): 1121-1129.
[20]  Truong P N. The effect of extreme soil pH on vetiver growth. Vetiver Newsletter, 1993, 10: 11-13.
[21]  Zhou Q, Yu B J. Accumulation of inorganic and organic osmolytes and their role in osmotic adjustment in NaCl-stressed vetiver grass seedlings. Russian Journal of Plant Physiology, 2009, 56(5): 678-685.
[22]  Xia H P, Wang Q L, Kong G H. Phyto-toxicity of garbage leachates and effectiveness of plant purification for them. Acta Phytoecologica Sinica, 1999, 23: 289-301.
[23]  Islam M S, Shahin H M. Reinforcing effect of vetiver (Vetiveria zizanioides) root in geotechnical structures-experiments and analyses. Geomechanics and Engineering, 2013, 5(4): 313-329.
[24]  Hengchaovanich D, Nilaweera N S. An assessment of strength properties of vetiver grass roots in relation to slope stabilization[A]. Proceedings of the First International Conference on Vetiver[C]. Thailand: Chiang Rai, 1988: 153-158.
[25]  Xiao H B, Zhao L, Li Z Y, et al. Experimental study on Vetiveria zizanioides root system distribution and tensile strength. Journal of Central South University of Forestry & Technology, 2014, 34(3): 6-10.
[26]  Liu J X, Chen Y. Issues of utilization and protection for native vetiver grass. Pratacultural Science, 2002, 19(7): 13-16.
[27]  Liu W G, Shan L. Effects of soil bulk density on the growth of maize plant under different water regime. Chinese Journal of Applied Ecology, 2003, 14(11): 1906-1910.
[28]  Benigno S M, Cawthray G R, Dixon K W, et al. Soil physical strength rather than excess ethylene reduces root elongation of Eucalyptus seedlings in mechanically impeded sandy soils. Plant Growth Regulation, 2012, 68(2): 261-270.
[29]  Masle J, Passioura J B. The effect of soil strength on the growth of young wheat plants. Australian Journal of Plant Physiology, 1987, 14: 643-656.
[30]  Buttery B R, Tan C C, Drury C F. The effects of soil compaction, soil moisture and soil type on growth and nodulation of soybean and common bean. Canadian Journal of Plant Science, 1998, 78: 571-576.
[31]  Goodman A,Ennos A. The effects of soil bulk density on the morphology and anchorage mechanics of the root systems of sunflower and maize. Annals of Botany, 1999, 83(3): 293-302.
[32]  Oussible M, Crookston R K, Larson W E. Subsurface compaction reduces the root and shoot growth and grain yield of wheat. Agronomy Journal, 1992, 84: 34-38.
[33]  Iijima M, Kono Y, Yamauchi A, et al. Effects of soil compaction on the development of rice and maize root systems. Environmental and Experimental Botany, 1991, 31: 333-342.
[34]  Hartung W, Zhang J, Davies W J. Does abscisic acid play a stress physiological role in maize plants growing in heavily compacted soil? Journal of Experimental Botany, 1994, 45: 221-226.
[35]  Arvidsson J. Nutrient uptake and growth of barley as affected by soil compaction. Plant and Soil, 1999, 208: 9-19.
[36]  Andrade A, Wolf D W, Fereres E. Leaf expansion, photosynthesis, and water relations of sunflower plants growth on compacted soil. Plant and Soil, 1993, 149: 175-184.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133