Hu S, Chapin F S, Firestone M, et al. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature, 2001, 409(6817): 188-191.
[2]
Li H, Li X L, Xiang D. Role of arbuscular mycorrhzizal fungi in Leymus chinensis litter decomposition. Ecology and Environmental Sciences, 2010, 19(7): 1569-1573.
[3]
He Y J, Zhong Z C, Dong M. Nutrients transfer for host plant and litter decompositon by AMF in Karst soil. Acta Ecologica Sinica, 2012, 32(8): 2525-2531.
[4]
Pregitzer K S, Zak D R, Loya W M, et al. The Contribution of Root-rhizosphere Interactions to Biogeochemical Cycles in a Changing World. The Rhizosphere: An Ecological Perspective, 2007: 155-178.
[5]
Berntson G M, Wayne P M, Bazzaz F A. Below-ground architectural and mycorrhizal responses to elevated CO2 in Betula alleghaniensis populations. Functional Ecology, 1997, 11(6): 684-695.
[6]
Rillig M C, Wright S F, Kimball B A, et al. Elevated carbon dioxide and irrigation effects on water stable aggregates in a Sorghum field: a possible role for arbuscular mycorrhizal fungi. Global Change Biology, 2001, 7(3): 333-337.
[7]
Johnson N C, Wolf J, Koch G W. Interactions among mycorrhizae, atmospheric CO2 and soil N impact plant community composition. Ecology Letters, 2003, 6(6): 532-540.
[8]
Smith S E, Read D G. Mycorrhizal Symbiosis. Amsterdam, the Netherlands & Boston, MA, USA: Academic Press, 1996.
[9]
Chen J, Chen X, Tang J J. Influence of elevated atmospheric CO2 on rhizosphere microbes and arbuscular mycorrhizae. Chinese Journal of Applied Ecology, 2004, 15(12): 2388-2392.
[10]
Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 2008, 320: 889-892.
[11]
Chen H, Mo J M, Zhang W, et al. The effects of nitrogen deposition on forest carbon sequestration. Acta Ecologica Sinica, 2012, 32(21): 6864-6879.
[12]
Krén O, Nylund J E. Effects of ammonium sulphate on the community structure and biomass of ectomycorrhizal fungi in a Norway spruce stand in southwestern Sweden. Canadian Journal of Botany, 1997, 75(10): 1628-1642.
[13]
Gao T P. Response of mycorrhizal fungi to CO2 rising and N deposition. Journal of Desert Research, 2009, 29(1): 131-135.
[14]
Rillig M C, Allen M F, Klironomos J N, et al. Arbuscular mycorrhizal percent root infection and infection intensity of bromus hordeaceus grown in elevated atmospheric CO2. Mycologia, 1998, 90(2): 199-205.
[15]
Sun L J, Qi Y C, Dong Y S, et al. Research progresses on the effects of global change on microbial community diversity of grassland soils. Progress in Geography, 2012, 31(12): 1715-1723.
[16]
Chung H, Zak D R, Reich P B, et al. Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Global Change Biology, 2007, 13(5): 980-989.
[17]
Pieiro G, Paruelo J M, Oesterheld M, et al. Pathways of grazing effects on soil organic carbon and nitrogen. Rangeland Ecology & Management, 2010, 63(1): 109-119.
[18]
Zhang Y, Cui X M, Fan M S. Atmospheric N deposition and its influences on the grassland biodiversity. Pratacultural Science, 2007, 24(7): 12-17.
[19]
Fernandez D P, Neff J C, Reynolds R L. Biogeochemical and ecological impacts of livestock grazing in semi-arid southeastern Utah, USA. Journal of Arid Environments, 2008, 72(5): 777-791.
[20]
Bagchi S, Ritchie M E. Introduced grazers can restrict potential soil carbon sequestration through impacts on plant community composition. Ecology Letters, 2010, 13(8): 959-968.
[21]
Li L H, Liu X H, Chen Z Z. Study on the carbon cycle of Leymus chinensis steppe in the Xilin River basin. Acta Botanica Sinica, 1998, 40(10): 955-961.
[22]
Kareiva P. Diversity and sustainability on the prairie. Nature, 1996, 379: 673-674.
[23]
Cao G M, Xu X L, Long R J, et al. Methane emissions by alpine plant communities in the Qinghai-Tibet Plateau. Biology Letters, 2008, 4(6): 681-684.
[24]
Hirota M, Tang Y, Hu Q, et al. The potential importance of grazing to the fluxes of carbon dioxide and methane in an alpine wetland on the Qinghai-Tibetan Plateau. Atmospheric Environment, 2005, 39(29): 5255-5259.
[25]
Su Y Y, Guo L D. Arbuscular mycorrhizal fungi in non-grazed, restored and over-grazed grassland in the Inner Mongolia steppe. Mycorrhiza, 2007, 17(8): 689-693.
[26]
Medina-Roldán E, Arredondo J T, Huber-Sannwald E, et al. Grazing effects on fungal root symbionts and carbon and nitrogen storage in a shortgrass steppe in Central Mexico. Journal of Arid Environments, 2008, 72(4): 546-556.
[27]
Liebig M A, Gross J R, Kronberg S L, et al. Soil response to long-term grazing in the northern Great Plains of North America. Agriculture, Ecosystems & Environment, 2006, 115(1): 270-276.
[28]
Johnson N C. Can fertilization of soil select less mutualistic mycorrhizae. Ecological Applications, 1993, 3(4): 749-757.
[29]
Sikora L J, McCoy J L. Attempts to determine available carbon in soils. Biology and Fertility of Soils, 1990, 9(1): 19-24.
[30]
Hatch D J, Lovell R D, Antil R S, et al. Nitrogen mineralization and microbial activity in permanent pastures amended with nitrogen fertilizer or dung. Biology and Fertility of Soils, 2000, 30(4): 288-293.
[31]
Christensen N L. The effects of fire on physical and chemical properties of soils in Mediterranean-climate shrublands. The Role of Fire in Mediterranean-type Ecosystems, 1994, 107: 79-95.
[32]
Wang H Q, Guo A X, Di X Y. Immediate changes in soil organic carbon and microbial biomass carbon after an experimental fire in great xing’an mountains. Journal of Northeast Forestry University, 2011, 39(5): 573-576.
[33]
Ren J Z, Liang T G, Lin H L, et al. Study on grassland’s responses to global climate change and its carbon sequestration potentials. Acta Prataculturae Sinica, 2011, 20(2): 1-22.
[34]
Lin S S, Sun X W, Wang X J, et al. Mycorrhizal studies and their application prospects in China. Acta Prataculturae Sinica, 2013, 22(5): 310-325.
[35]
Li H, Smith S E, Holloway R E, et al. Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytologist, 2006, 172(3): 536-543.
[36]
Jin H R, Jiang X Y. Recent advances in the studies of nitrogen metabolism and translocation in arbuscular mycorrhizal fungi. Mycosystema, 2009, 28(3): 466-471.
[37]
Parton W J, Cole C V, Stewart J W B, et al. Simulating regional patterns of soil C, N, and P dynamics in the US central grasslands region. Ecology of Arable Land—Perspectives and Challenges, 1989, 39: 99-108.
[38]
Chen P F, Wang J L, Wang X M, et al. Research progress in estimating carbon storage of forest ecosystem. Forest Inventory and Planning, 2009, 34(6): 39-45.
Yu G R, Li H T, Wang S Q. Terrestrial Ecosystem Carbon Cycle and Carbon Accumulation on Global Change. Beijing: Meteorological Press, 2003.
[74]
Scurlock J M O, Johnson K, Olson R J. Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biology, 2002, 8(8): 736-753.
[75]
Reeder J D, Schuman G E. Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands. Environmental Pollution, 2002, 116(3): 457-463.
[76]
Schuman G E, Janzen H H, Herrick J E. Soil carbon dynamics and potential carbon sequestration by rangelands. Environmental Pollution, 2002, 116(3): 391-396.
[77]
Kang L, Han X G, Zhang Z B, et al. Grassland ecosystems in China: review of current knowledge and research advancement. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362: 997-1008.
[78]
Ren J Z. Grassland Agriculture Ecology. Beijing: China Agricultural Press, 1995: 1.
[79]
Fang J Y, Yang Y H, Ma W H, et al. Carbon sink and its transformation by grassland ecosystems in China. Scientia Sinica(Vitae), 2010, (7): 566-576.
[80]
Yang Y H, Fang J Y, Ma W H, et al. Soil carbon stock and its changes in northern China’s grasslands from 1980s to 2000s. Global Change Biology, 2010, 16(11): 3036-3047.
[81]
Yang Y H, Fang J Y, Tang Y H, et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology, 2008, 14(7): 1592-1599.
[82]
Ajtay G L, Ketner P, Duvigneaud P. Terrestrial primary production and phytomass. The Global Carbon Cycle, 1979, 13: 129-182.
[83]
Lützow M V, Kgel-Knabner I, Ekschmitt K, et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions-a review. European Journal of Soil Science, 2006, 57(4): 426-445.
[84]
Six J, Frey S D, Thiet R K, et al. Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Science Society of America Journal, 2006, 70(2): 555-569.
[85]
Wendu R L, Li G, Zhang J N, et al. The study of soil microbial biomass and soil enzyme avtivity on different grassland in Hulunbeier, Inner Mongolia. Acta Prataculturae Sinica, 2010, 19(5): 94-102.
[86]
Zhu J J, Xu H, Xu M L, et al. Review on the ecological relationships between forest trees and ectomycorrhizal fungi. Chinese Journal of Ecology, 2003, 22(6): 70-76.
[87]
Clemmensen K E, Bahr A, Ovaskainen O, et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science, 2013, 339(6127): 1615-1618.
[88]
Smith S E, Read D J. Mycorrhizal Symbiosis. Amsterdam, the Netherlands & Boston, MA, USA: Academic Press, 2008.
[89]
Willis A, Rodrigues B F, Harris P J C. The ecology of arbuscular mycorrhizal fungi. Critical Reviews in Plant Sciences, 2013, 32(1): 1-20.
[90]
O’Connor P J, Smith S E, Smith F A. Arbuscular mycorrhizal associations in the southern Simpson Desert. Australian Journal of Botany, 2001, 49(4): 493-499.
[91]
Bao Y Y, Yan W. Arbuscular mycorrhizae and their structural types on common plants in grasslands of mid-western Inner Mongolia. Chinese Biodiversity, 2004, 12(5): 501-508.
[92]
BaoY Y, Yan W, Zhang M Q. Arbuscular mycorrhizal fungi associated with common plants in grassland of Inner Mongolia. Mycosystema, 2007, 26(1): 51-58.
[93]
He X L, Bai C M, Zhao L L. Spatial distribution of arbuscular mycorrhizal fungi in Astragalus adsurgens root-zone soil in Mu Us sand land. Chinese Journal of Applied Ecology, 2008, (12): 2711-2716.
[94]
Fogel R, Hunt G. Fungal and arboreal biomass in a western Oregon Douglas-fir ecosystem: distribution patterns and turnover. Canadian Journal of Forest Research, 1979, 9(2): 245-256.
[95]
Nicolson T H, Johnston C. Mycorrhiza in the Gramineae: III. Glomus fasciculatus as the endophyte of pioneer grasses in a maritime sand dune. Transactions of the British Mycological Society, 1979, 72(2): 261-268.
[96]
Stribley D P, Tinker P B, Rayner J H. Relation of internal phosphorus concentration and plant weight in plants infected by vesicular-arbuscular mycorrhizas. New Phytologist, 1980, 86(3): 261-266.
[97]
Paul E A, Kucey R M N. Carbon flow in plant microbial associations. Science, 1981, 213(4506): 473-474.
[98]
Bevege D I, Bowen G D, Skinner M F. Comparative Carbohydrate Physiology of Ecto-and Endomycorrhizas. Endomycorrhizas; Proceedings of a Symposium, 1975.
[99]
Zhang Y J, Yang G W, Liu N, et al. Review of grassland management practices for carbon sequestration. Acta Prataculturae Sinica, 2013, 22(2): 290-299.
[100]
Tao N, Zhang X Y, Zeng H, et al. Seasonal characteristics of soil CO2 efflux and carbon and nitrogen cycling induced by microorganisms in snow-covered and frozen soil system. Microbiology China, 2013, 40(1): 146-157.
[101]
Huang D, Sang W G, Zhu L, et al. Effects of nitrogen and carbon addition and arbuscular mycorrhiza on alien invasive plant Ambrosia artemisiifolia. The Journal of Applied Ecology, 2010, 21(12): 3056-3062.
[102]
Zhang Y F, Fen G, Li X L. The effect of arbuscular mycorrhizal fungi on the components and concentrations of organic acids in the exudates of mycorrhizal red clover. Acta Ecologica Sinica, 2003, 23(1): 30-37.
[103]
Gavito M E, Curtis P S, Mikkelsen T N, et al. Atmospheric CO2 and mycorrhiza effects on biomass allocation and nutrient uptake of nodulated pea (Pisum sativum L.) plants. Journal of Experimental Botany, 2000, 51(352): 1931-1938.
[104]
Setl H. Reciprocal interactions between Scots pine and soil food web structure in the presence and absence of ectomycorrhiza. Oecologia, 2000, 125(1): 109-118.
[105]
Amundson R. The carbon budget in soils. Annual Review of Earth and Planetary Sciences, 2001, 29(1): 535-562.
[106]
Guo R, Wang X K, Lu F, et al. Soil carbon sequestration and its potential by grassland ecosystems in China. Acta Ecologica Sinica, 2008, 28(2): 0862-0867.
[107]
Peng S L, Shen H, Zhang Y T, et al. Compare different effect of arbuscular mycorrhizal colonization on soil structure. Acta Ecologica Sinica, 2012, 32(3): 863-870.
[108]
Van Der Heijden M G A, Streitwolf-Engel R, Riedl R, et al. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytologist, 2006, 172(4): 739-752.
[109]
Martin C A, Stutz J C. Interactive effects of temperature and arbuscular mycorrhizal fungi on growth, P uptake and root respiration of Capsicum annuum L. Mycorrhiza, 2004, 14(4): 241-244.
[110]
Tu C, Booker F L, Watson D M, et al. Mycorrhizal mediation of plant N acquisition and residue decomposition: impact of mineral N inputs. Global Change Biology, 2006, 12(5): 793-803.
[111]
Bever J D, Schultz P A, Pringle A, et al. Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why: The high diversity of ecologically distinct species of arbuscular mycorrhizal fungi within a single community has broad implications for plant ecology. Bioscience, 2001, 51(11): 923-932.
[112]
Quintero-Ramos M, Espinoza-Victoria D, Ferrera-Cerrato R, et al. Fitting plants to soil through mycorrhizal fungi: mycorrhiza effects on plant growth and soil organic matter. Biology and Fertility of Soils, 1993, 15(2): 103-106.
[113]
Miller R M, Jastrow J D. Mycorrhizal Fungi Influence Soil Structure, in Arbuscular Mycorrhizas: Physiology and Function. Berlin, Germany: Springer Netherlands, 2000: 3-18.
[114]
Peng X H, Zhang B, Zhao Q G. A review on relationship between soil organic carbon pools and soil structure stability. Acta Pedologica Sinica, 2004, 41(4): 618-623.
[115]
Chen B Y, Liu S R, Ge J P, et al. The relationship between soil respiration and the temperature at different soil depths in subalpine coniferous forest of western Sichuan Province. Chinese Journal of Applied Ecology, 2007, 18(6): 1219-1224.
[116]
Yang Y, Han G D, Li Y H, et al. Response of soil respiration to grazing intensity,water contents,and temperature of soil in different grasslands of Inner Mongolia. Acta Prataculturae Sinica, 2012, 21(6): 8-14.
[117]
Raich J W, Tufekciogul A. Vegetation and soil respiration: correlations and controls. Biogeochemistry, 2000, 48(1): 71-90.
[118]
Kane E S, Valentine D W, Schuur E A G, et al. Soil carbon stabilization along climate and stand productivity gradients in black spruce forests of interior Alaska. Canadian Journal of Forest Research, 2005, 35(9): 2118-2129.
[119]
Schlesinger W H, Andrews J A. Soil respiration and the global carbon cycle. Biogeochemistry, 2000, 48(1): 7-20.
[120]
Chen W X. Soil and Environmental Microbiology. Beijing: China Agricultural University Press, 1990: 18-43.
[121]
Zhou Y M, Han S J, Xin L H. Soil respiration of Pinus koraiensis and P. sylvestriformis trees growing at elevated CO2 concentration. Chinese Journal of Applied Ecology, 2006, 17(9): 1757-1760.
[122]
Hoeksema J D, Chaudhary V B, Gehring C A, et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters, 2010, 13(3): 394-407.
[123]
Treseder K K, Holden S R. Fungal carbon sequestration. Science, 2013, 339(6127): 1528-1529.
[124]
Johnson D, Leake J R, Read D J. Transfer of recent photosynthate into mycorrhizal mycelium of an upland grassland: short-term respiratory losses and accumulation of 14C. Soil Biology and Biochemistry, 2002, 34(10): 1521-1524.
[125]
Domanski G, Kuzyakov Y, Siniakina S, et al. Carbon flows in the rhizosphere of ryegrass (Lolium perenne). Journal of Plant Nutrition and Soil Science, 2001, 164(4): 381-387. 3.0.CO;2-5 target="_blank">
[126]
Fan Y J, Hou X Y, Shi H X, et al. Effect of carbon cycling in grassland ecosystems on climate warming. Acta Prataculturae Sinica, 2012, 21(3): 294-302.
[127]
Smith S E, Smith F A, Jakobsen I. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology, 2003, 133(1): 16-20.
[128]
Yang H X, Liu R J, Guo S X. Effects of arbuscular mycorrhizal fungus Glomus mossese on the growth characteristics of Festuca arundinacea under salt stress conditions. Acta Prataculturae Sinica, 2014, 23(4): 195-203.
[129]
Shi W Q, Ding X D, Zhang S R. Effects of arbuscular mycorrhizal fungi on Leymus chinensis growth and soil carbon. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(2): 357-362.
[130]
Hetrick B A D, Wilson G W T, Hartnett D C. Relationship between mycorrhizal dependence and competitive ability of two tallgrass prairie grasses. Canadian Journal of Botany, 1989, 67(9): 2608-2615.
[131]
Rouhier H, Read D J. The role of mycorrhiza in determining the response of Plantago lanceolata to CO2 enrichment. New Phytologist, 1998, 139(2): 367-373.
[132]
Ye S P, Zeng X H, Xin G R, et al. Effects of arbuscular mycorrhizal fungi (AMF) on growth and regrowth of bermudagrass under different P supply levels. Acta Prataculturae Sinica, 2013, 22(1): 46-52.
[133]
Hetrick B D, Kitt D G, Wilson G T. Mycorrhizal dependence and growth habit of warm-season and cool-season tallgrass prairie plants. Canadian Journal of Botany, 1988, 66(7): 1376-1380.
[134]
Qin H B, He C X, Zhang Z B, et al. The effects of arbuscular mycorrhizal fungi on the growth of cucumber in greenhouse. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 2007, 28(3): 69-72.
[135]
Wang R Z, He C X, Wang H S, et al. Effect of AM fungi on the yield and nutrient quality of different muskmelon varieties in greenhouse. Acta Horticulturae Sinica, 2010, 37(11): 1767-1774.
[136]
Zhang S B, Wang H J, Wang Y S, et al. Effects of the different substrates on the growth of cucumber and infection of arbuscular mycorrhizal fungi. Chinese Agricultural Science Bulletin, 2011, 27(10): 275-279.
[137]
McHugh J M, Dighton J. Influence of mycorrhizal inoculation, inundation period, salinity, and phosphorus availability on the growth of two salt marsh grasses, Spartina alterniflora Lois. and Spartina cynosuroides (L.) Roth., in nursery systems. Restoration Ecology, 2004, 12(4): 533-545.
[138]
Yoshida L C, Allen E B. Response to ammonium and nitrate by a mycorrhizal annual invasive grass and native shrub in southern California. American Journal of Botany, 2001, 88(8): 1430-1436.
[139]
Heil G W, Werger M J A, De Mol W, et al. Capture of atmospheric ammonium by grassland canopies. Science, 1988, 239(4841): 764-765.