全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

干旱胁迫下高羊茅基因组甲基化分析

DOI: 10.11686/cyxb20150420, PP. 164-173

Keywords: 高羊茅,干旱胁迫,DNA甲基化,MSAP,转座子

Full-Text   Cite this paper   Add to My Lib

Abstract:

DNA甲基化是真核细胞基因组重要的一种表观遗传调控。DNA甲基化影响基因表达,在植物逆境胁迫适应中起着重要作用。高羊茅是禾本科单子叶羊茅属植物,具有良好的耐寒、耐热性,大量用作运动场草坪和防护草坪,也可用做牧草。干旱是限制高羊茅分布和产量的主要因素之一。本研究利用甲基化敏感扩增多态性技术(MSAP),比较了高羊茅在干旱胁迫15d后基因组胞嘧啶甲基化的变化。在干旱胁迫下,植株生长受到严重抑制。MSAP分析显示,10对选择性扩增引物,共扩增出475个CCGG位点,其中131个位点发生了甲基化或去甲基化变化,占27.58%。对照组和干旱处理组,总甲基化水平分别是43.16%和42.11%,显示干旱胁迫诱导高羊茅总的甲基化率下降了1.05%。对差异条带进行归类分析,并克隆、测序,获得13条不同变化类型的序列。序列同源分析显示,大多数序列是参与胁迫应答的基因片段。其中2个片段,Fa6和Fa7为干旱诱导下发生甲基化的位点,分别与小麦和大麦的一个逆转录转座子具有较高的同源性,在干旱胁迫下它们的甲基化程度增加,表明干旱诱导二者进一步甲基化。甲基化的转座子在维持基因组稳定性具有重要作用。综上,干旱胁迫诱导的甲基化的变化,可能参与高羊茅对环境的适应性调节。

References

[1]  Haig D. Genomic imprinting and kinship: how good is the evidence. Annual Review of Genetics, 2004, 38: 553-585.
[2]  Jost J P, Saluz H P. DNA Methylation: Molecular Biology and Biological Significance. Birkhauser Verlag, 1993.
[3]  Richards E J. DNA methylation and plant development. Trends in Genetics, 1997, 13(8): 319-323.
[4]  Iqbal K, Jin S G, Pfeifer G P, et al. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proceedings of the National Academy of Sciences, 2011, 108: 3642-3647.
[5]  Vanyushin B F. DNA methylation in plants. DNA Methylation: Basic Mechanisms. Springer Berlin Heidelberg, 2006: 67-122.
[6]  Voinnet O. Induction and suppression of RNA silencing: insights from viral infections. Nature Reviews Genetics, 2005, 6(3): 206-220.
[7]  Ito Y, Katsura K, Maruyama K, et al. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant and Cell Physiology, 2006, 47(1): 141-153.
[8]  Yamaguchi-Shinozaki K, Shinozaki K. Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends in Plant Science, 2005, 10: 88-94.
[9]  Wang W S, Pan Y J, Zhao X Q, et al. Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). Journal of Experimental Botany, 2011, 62:1951-1960.
[10]  Fan H, Li T, Guan L, et al. Effects of exogenous nitric oxide on antioxidation and DNA methylation of Dendrobium huoshanense grown under drought stress. Plant Cell, Tissue and Organ Culture, 2012, 109(2): 307-314.
[11]  Labra M, Ghiani A, Citterio S, et al. Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biology, 2002, 4(6): 694-699.
[12]  Barciszewska M Z, Barciszewska A M, Rattan S I S. TLC-based detection of methylated cytosine: application to aging epigenetics. Biogerontology, 2007, 8(6): 673-678.
[13]  McClelland M, Nelson M, Raschke E. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Research, 1994, 22:3640-3659.
[14]  Chen X, Ma Y, Chen F, et al. Analysis of DNA methylation patterns of PLBs derived from Cymbidium hybridium based on MSAP. Plant Cell, Tissue and Organ Culture, 2009, 98(1): 67-77.
[15]  Chakrabarty D, Yu K W, Paek K Y. Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng (Eleuterococcussenticosus). Plant Science, 2003, 165(1): 61-68.
[16]  Cervera M T, Ruiz-Garcia L, Martinez-Zapater J. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Molecular Genetics and Genomics, 2002, 268: 543-552.
[17]  Shan X, Wang X, Yang G, et al. Analysis of the DNA methylation of maize (Zea mays L.) in response to cold stress based on methylation-sensitive amplified polymorphisms. Journal of Plant Biology, 2013, 56(1): 32-38.
[18]  Meng F R, Li Y C, Yin J, et al. Analysis of DNA methylation during the germination of wheat seeds. Biologia Plantarum, 2012, 56(2): 269-275.
[19]  Baurens F C, Bonnot F, Bienvenu D, et al. Using SD-AFLP and MSAP to assess CCGG methylation in the banana genome. Plant Molecular Biology Reporter, 2003, 21(4): 339-348.
[20]  Li X L, Lin Z X, Nie Y C, et al. MSAP Analysis of epigenetic changes in cotton (Gossypium hirsutum L.) under Salt Stress. Acta Agronomica Sinica, 2009, 35(4): 588-596.
[21]  Yu G J, Lin Q T,Ke Q M, et al. Progress and prospects of tall fescue turfgrass. Pratacultural Science, 2005, 22(7): 77-82.
[22]  Chen Q,Yuan X J,He Y L. Screening molecular markers for heat tolerance and its relation to summer tolerance in tall fescue single plants. Acta Prataculturae Sinica, 2013, 22(5): 84-95.
[23]  Reyna-Lopez G E, Simpson J, Ruiz-Herrera J. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Molecular and General Genetics, 1997, 253(6): 703-710.
[24]  Bassam B J, Caetano-Anolles G, Gresshoff P M. Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry, 1991, 196(1): 80-83.
[25]  Tang X M, Tao X, Wang Y,et al. Analysis of DNA methylation of perennial ryegrass under drought using the methylation-sensitive amplification polymorphism (MSAP) technique. Molecular Genetics and Gemomics, 2014, 289:1075-1084..
[26]  Gruenbaum Y, Cedar H, Razin A. Restriction enzyme digestion of hemimethylated DNA. Nucleic Acids Research, 1981, 9(11): 2509-2515.
[27]  Gruenbaum Y, Naveh-Many T, Cedar H, et al. Sequence specificity of methylation in higher plant DNA. Nature, 1981, 292:860-862.
[28]  Zhang X, Yazaki J, Sundaresan A, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell, 2006, 126(6): 1189-1201.
[29]  Yoder J A, Walsh C P, Bestor T H. Cytosine methylation and the ecology of intra genomic parasites. Trends in Genetics, 1997, 13: 335-340.
[30]  Boyko A, Kovalchuk I. Epigenetic control of plant stress response. Environmental and Molecular Mutagenesis, 2008, 49: 61-72.
[31]  Ros F, Kunze R. Regulation of activator/dissociation transposition by replication and DNA methylation. Genetics, 2001, 157(4): 1723-1733.
[32]  Yaish M W. DNA Methylation-Associated Epigenetic Changes in Stress Tolerance of Plants. Molecular Stress Physiology of Plants: Springer, 2013: 427-440.
[33]  Finnegan E, Genger R, Peacock W, et al. DNA methylation in plants. Annual Review of Plant Biology, 1998, 49: 223-247.
[34]  余高镜, 林奇田, 柯庆明, 等. 草坪型高羊茅的研究进展与展望. 草业科学, 2005, 22(7): 77-82.
[35]  陈群, 袁晓君, 何亚丽. 高羊茅单株耐热性相关分子标记的筛选及其与越夏性的关系研究. 草业学报, 2013, 22(5): 84-95. 浏览
[36]  谷佳林, 边秀举, 徐凯, 等. 不同缓控释氮肥对高羊茅草坪生长及氮素挥发的影响. 草业学报, 2013, 22(2): 235-242. 浏览
[37]  彭燕, 李州. 干旱预处理对抗旱性不同的2个草地早熟禾品种耐热性能的影响. 草业学报, 2013, 22(5): 229-238. 浏览
[38]  徐胜, 李建龙, 赵德华. 高羊茅的生理生态及其生化特性研究进展. 草业学报, 2004, 13(1): 58-64.
[39]  王关林, 方宏筠. 植物基因工程. 北京:科学出版社,2009.
[40]  Gu J L, Bian X J, Xu K, et al. Effects of different slow-controlled release nitrogen fertilizer on tall fescue turf growth and nitrogen volatilization. Acta Prataculturae Sinica, 2013, 22(2): 235-242.
[41]  Peng Y, Li Z. Effects of drought preconditioning on physiological responses to heat stress in two Kentucky bluegrasses. Acta Prataculturae Sinica, 2013, 22(5): 229-238.
[42]  Xu S, Li J L, Zhao D H. Research advances in physiological ecological and biochemical characteristics of Festuca arundinacea. Acta Prataculturae Sinica, 2004, 13(1): 58-64.
[43]  Hirayama T, Shinozaki K. Research on plant abiotic stress responses in the post-genome era: past, present and future. The Plant Journal, 2010, 61(6):1041-1052.
[44]  Wang G L, Fang H J. Plant Genetic Engineering. Beijing: Science Press,2009.
[45]  Messeguer R, Ganal M W, Steffens J C, et al. Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA. Plant Molecular Biology, 1991, 16(5): 753-770.
[46]  Gupta V, Bijo A J, Kumar M, et al. Detection of epigenetic variations in the protoplast-derived germlings of Ulva reticulata using methylation sensitive amplification polymorphism (MSAP). Marine Biotechnology, 2012, 14(6): 692-700.
[47]  Lewin B. Genes IX. Sudbury, Mass: Jones and Bartlett Publishers, 2008.
[48]  Ma X, Zhang X Q, Zhou Y H, et al. Application progress of molecular marker in studying Festuca arundinacea. Acta Prataculturae Sinica, 2006, 15(2): 1-8.
[49]  Seal A G. DNA variation in Festuca. Heredity, 1983, 50(3): 225-236.
[50]  Bender J. Cytosine methylation of repeated sequences in eukaryotes: the role of DNA pairing. Trends in Biochemical Sciences, 1998, 23: 252-256.
[51]  Boyko A, Kovalchuk I. Genetic and epigenetic effects of plant-pathogen interactions: an evolutionary perspective. Molecular Plant, 2011, 4: 1014-1023.
[52]  Lukens L N, Zhan S. The plant genome’s methylation status and response to stress: implications for plant improvement. Current Opinion in Plant Biology, 2007, 10: 317-322.
[53]  Li H, Peng L X, Yu W W, et al. Analysis of DNA cytosine methylation under salt stress in Carthamus tinctorius based on MSAP. Acta Agriculturae Boreali-Occidentalis Sinica, 2012, 20(12): 116-120.
[54]  Tan M P. Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physiology and Biochemistry, 2010, 48: 21-26.
[55]  Martienssen R A, Colot V. DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science, 2001, 293: 1070-1074.
[56]  Ng H H, Adrian B. DNA methylation and chromatin modification. Current Opinion in Genetics & Development, 1999, 9: 158-163.
[57]  Choi C S, Sano H. Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Molecular Genetics and Genomics, 2007, 277: 589-600.
[58]  Steward N, Ito M, Yamaguchi Y, et al. Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. Journal of Biological Chemistry, 2002, 277: 37741-37746.
[59]  Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 2000, 408:796-815.
[60]  International Rice Genome Sequencing Project. The map-based sequence of the rice genome.Nature, 2005, 436: 793-800
[61]  Schnable P S, Ware D, Fulton R S, et al. The B73 maize genome: complexity, diversity, and dynamics.Science, 2009, 326: 1112-1115.
[62]  马啸, 张新全, 周永红,等. 高羊茅的分子标记应用进展. 草业学报, 2006, 15(2): 1-8.
[63]  李慧, 彭立新, 于玮玮, 等. 盐胁迫下红花基因组DNA甲基化的MSAP分析. 西北农业学报, 2012, 20(12): 116-120.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133