全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

土壤熏蒸-微生物有机肥联用对连作马铃薯生长和土壤生化性质的影响

DOI: 10.11686/cyxb20150313, PP. 122-133

Keywords: 马铃薯,连作,发病率,可培养微生物,镰刀菌,土壤酶

Full-Text   Cite this paper   Add to My Lib

Abstract:

甘肃省中部沿黄灌区是全国重要的加工型马铃薯生产基地,但因集约化种植带来的连作障碍问题已严重影响到产业的健康发展,因而寻求能够缓解或克服马铃薯连作障碍的有效措施。本研究评估了土壤熏蒸和微生物有机肥联用的方法对马铃薯连作障碍的防控效果,特别是对植株生长发育、土传病害抑制以及微生物区系和酶活性等土壤生化性质的影响。田间试验共设置5个处理:对照(CK)、氨水熏蒸(SFA)、石灰+碳铵熏蒸(SFB)、氨水熏蒸与微生物有机肥联用(SFA+BOF)、石灰+碳铵熏蒸与微生物有机肥联用(SFB+BOF)。结果表明,SFA+BOF和SFB+BOF处理较CK均显著增加连作马铃薯的块茎产量,增幅分别达到13.62%和20.36%,也显著降低植株的发病率(54.92%和72.82%)和收获后的病薯率(66.15%和64.76%),并且提高叶绿素含量和改善根系形态结构。SFA+BOF和SFB+BOF处理显著影响土壤可培养微生物的数量,表现为增加马铃薯生育后期土壤细菌和放线菌的数量,降低真菌的数量,在土壤中维持一个更高的细菌/真菌。与CK、SFA和SFB处理相比,SFA+BOF和SFB+BOF处理大幅度降低了连作马铃薯生育期内主要土传致病菌——镰刀菌的数量,使植株发病率降低且块茎产量显著增加。SFA+BOF和SFB+BOF处理对连作土壤脲酶、蔗糖酶、脱氢酶和过氧化氢酶的活性无显著影响,但显著提高磷酸酶的活性。因此,土壤熏蒸和微生物有机肥联用的方法在克服甘肃省中部沿黄灌区的马铃薯连作障碍上具有较大的应用潜力,且石灰+碳铵熏蒸与微生物有机肥联用的效果优于氨水熏蒸与微生物有机肥联用。

References

[1]  牛秀群, 李金花, 张俊莲, 等. 甘肃省干旱灌区连作马铃薯根际土壤中镰刀菌的变化. 草业学报, 2011, 20(4): 236-243. 浏览
[2]  李瑞琴, 刘星, 邱慧珍, 等. 发生马铃薯立枯病土壤中立枯丝核菌的荧光定量PCR快速检测. 草业学报, 2013, 22(5): 136-144. 浏览
[3]  李瑞琴, 刘星, 邱慧珍, 等. 连作马铃薯根际干腐病优势病原菌荧光定量PCR快速检测及在根际的动态变化. 草业学报, 2013, 22(6): 239-248. 浏览
[4]  曹莉, 秦舒浩, 张俊莲, 等. 轮作豆科牧草对连作马铃薯田土壤微生物菌群及酶活性的影响. 草业学报, 2013, 22(3): 139-145. 浏览
[5]  张瑞福, 沈其荣. 抑病型土壤的微生物区系特征及调控. 南京农业大学学报, 2012, 35(5): 125-132.
[6]  李振高, 骆永明, 滕应. 土壤与环境微生物研究法. 北京: 科学出版社, 2008: 395-412.
[7]  Wang B, Ma Y L, Zhang Z B, et al. Potato viruses in China. Crop Protection, 2011, 30: 1117-1123.
[8]  Jansky S H, Jin L P, Xie K Y, et al. Potato production and breeding in China. Potato Research, 2009, 52: 57-65.
[9]  Shen B Y, Liu X, Wang D, et al. Effects of continuous cropping on potato eco-physiological characteristics in the Yellow River irrigation area of the central Gansu Province. Chinese Journal of Eco-Agriculture, 2013, 21(6): 689-699.
[10]  Shen B Y, Yu B, Wang W, et al. Study on the application of humic ammonia, organic fertilizer, microbial fertilizer to eliminate continuous cropping obstacles of potato in the arid regions of Gansu. Soils and Fertilizers Sciences in China, 2011, (2): 68-70.
[11]  Yu B, Shen B Y, Wang W, et al. Effects of different potato varieties on preventing continuous cropping obstacle in the arid regions. Journal of Gansu Agricultural University, 2012, 47(4): 43-47.
[12]  Huang L F, Song L X, Xia X J, et al. Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. Journal of Chemical Ecology, 2013, 39: 232-242.
[13]  Fiers M, Edel-Hermann V, Chatot C, et al. Potato soil-borne diseases: a review. Agronomy for Sustainable Development, 2012, 32: 93-132.
[14]  Shipton P J. Monoculture and soilborne plant pathogens. Annual Review of Phytopathology, 1977, 15: 387-407.
[15]  Yim B, Smalla K, Winkelmann T. Evaluation of apple replant problems based on different soil disinfection treatments-links to soil microbial community structure. Plant and Soil, 2012, 366: 617-631.
[16]  Savario C F, Hoy J W. Microbial communities in sugarcane field soils with and without a sugarcane cropping history. Plant and Soil, 2011, 341: 63-73.
[17]  Li C G, Li X M, Kong W D, et al. Effect of monoculture soybean on soil microbial community in the Northeast China. Plant and Soil, 2010, 330: 423-433.
[18]  Yao H Y, Jiao X D, Wu F Z. Effects of continuous cucumber cropping and alternative rotations under protected cultivation on soil microbial community diversity. Plant and Soil, 2006, 284: 195-203.
[19]  Larkin R P. Characterization of soil microbial communities under different potato cropping systems by microbial population dynamics, substrate utilization, and fatty acid profiles. Soil Biology and Biochemistry, 2003, 35: 1451-1466.
[20]  Li J P, Li M Q, Hui N N, et al. Population dynamics of main fungal pathogens in soil of continuously cropped potato. Acta Prataculturae Sinica, 2013, 22(4): 147-152.
[21]  Lu L H, Yin S X, Liu X, et al. Fungal networks in yield-invigorating and -debilitating soils induced by prolonged potato monoculture. Soil Biology and Biochemistry, 2013, 65: 186-194.
[22]  Meng P P, Liu X, Qiu H Z, et al. Fungal population structure and its biological effect in rhizosphere soil of continuously cropped soil. Chinese Journal of Applied Ecology, 2012, 23(11): 3079-3086.
[23]  Niu X Q, Li J H, Zhang J L, et al. Changes of Fusarium in rhizosphere soil under potato continuous cropping systems in arid irrigated area of Gansu Province. Acta Prataculturae Sinica, 2011, 20(4): 236-243.
[24]  Li R Q, Liu X, Qiu H Z, et al. Rapid detection of Rhizoctonia in rhizopshere soil of potato using real-time quantitative PCR. Acta Prataculturae Sinica, 2013, 22(5): 136-144.
[25]  Li R Q, Liu X, Qiu H Z, et al. Changes in the dominant pathogens causing Fusarium dry rot of potato in rhizospheric soil under continuous potato cropping systems based on real-time quantitative PCR. Acta Prataculturae Sinica, 2013, 22(6): 239-248.
[26]  Cao L, Qin S H, Zhang J L, et al. Effects of leguminous forage rotations on soil microbe consortiums and enzyme activity in continuously cropped potato fields. Acta Prataculturae Sinica, 2013, 22(3): 139-145.
[27]  Klose S, Acosta-Martínez A, Ajwa H A. Microbial community composition and enzyme activities in a sandy loam soil after fumigation with methyl bromide or alternative biocides. Soil Biology Biochemistry, 2006, 38: 1243-1254.
[28]  Ladd J N, Brisbane P G, Butler J H A, et al. Studies on soil fumigation-III: Effects on enzyme activities, bacterial numbers and extractable ninhydrin reactive compounds. Soil Biology Biochemistry, 1976, 8: 255-260.
[29]  Jawson M D, Franzluebbers A J, Galusha D K, et al. Soil fumigation within monoculture and rotations: response of corn and mycorrhizae. Agronomy Journal, 1993, 85: 1174-1180.
[30]  Zhang R F, Shen Q R. Characterization of the microbial flora and management to induce the disease suppressive soil. Journal of Nanjing Agricultural University, 2012, 35(5): 125-132.
[31]  Bonanomi G, Antignani V, Capodilupo M, et al. Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biology and Biochemistry, 2010, 42: 136-144.
[32]  Wu Q P, Chen F J, Chen Y L, et al. Root growth in response to nitrogen supply in Chinese maize hybrids released between 1973 and 2009. Science China Life Sciences, 2011, 54: 642-650.
[33]  Komada H. Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Review of Plant Protection Research, 1975, 8: 114-124.
[34]  Li Z G, Luo Y M, Teng Y. Research Methods in Soil and Environmental Microorganisms. Beijing: Science Press, 2008: 395-412.
[35]  Zhou Q. Guidbook of Plant Physiological Experiments. Beijing: China Agricultural Press, 2008: 112-113.
[36]  Yao S, Merwin I A, Abawi G S, et al. Soil fumigation and compost amendment alter soil microbial community composition but do not improve tree growth. Soil Biology and Biochemistry, 2006, 38: 587-599.
[37]  Merwin I A, Byard R, Robinson T L, et al. Developing an integrated program for diagnosis and control of replant problems in New York apple orchards. New York Fruit Quarterly, 2001, 9: 11-15.
[38]  Wang L L, Shi J X, Yuan S F, et al. Control of tobacco bacterial wilt with biomanure plus soil amendments. Acta Pedologica Sinica, 2013, 50(1): 150-156.
[39]  Ruan W B, Wang J G, Zhang F S, et al. Effect of sterilization with CH3Br on root growth of soybean seedlings. Acta Ecologica Sinica, 2001, 21(5): 759-764.
[40]  Yuen G Y, Schroth M N, Weinhold A R, et al. Effects of soil fumigation with methyl bromide and chloropicrin on root health and yield of strawberry. Plant Disease, 1991, 75: 416-420.
[41]  Zhang S S, Yang X M, Mao Z S, et al. Effects of sterilization on growth of cucumber plants and soil microflora in a continuous mono-cropping soil. Acta Ecologica Sinica, 2007, 27(5): 1809-1817.
[42]  Marschner P, Rumberger A. Rapid changes in the rhizosphere bacterial community structure during re-colonization of sterilized soil. Biology and Fertility of Soils, 2004, 40(1): 1-6.
[43]  Noble R, Coventry E. Suppression of soil-borne diseases with compost: a review. Biocontorl Science and Technology, 2005, 15: 3-20.
[44]  Weller D M. Biological-control of soilborne plant-pathogens in the rhizosphere with bacteria. Annual Review of Phytopathology, 1988, 26: 379-407.
[45]  Cotxarrera L, Trillas-Gay M I, Steinberg C, et al. Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biology and Biochemistry, 2002, 34: 467-476.
[46]  Hoitink H A J, Boehm M J. Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annual Review of Phytopathology, 1999, 37: 427-446.
[47]  Gu L J, Xu B L, Liang Q L, et al. Impact and colonization ability of Trichoderma biocontrol on lawn soil microflora. Acta Prataculturae Sinica, 2013, 22(3): 321-326.
[48]  Lang J J, Hu J, Ran W, et al. Control of cotton Verticillium wilt and fungal diversity of rhizosphere soils by bio-organic fertilizer. Biology and Fertility of Soils, 2012, 48: 191-203.
[49]  Yamamoto T, Ultra Jr V U, Tanaka S, et al. Effects of methyl bromide fumigation, chloropicrin fumigation and steam sterilization on soil nitrogen dynamics and microbial properties in a pot culture experiment. Soil Science and Plant Nutrition, 2008, 54: 886-894.
[50]  参考文献:
[51]  沈宝云, 刘星, 王蒂, 等. 甘肃省中部沿黄灌区连作对马铃薯植株生理生态特性的影响. 中国生态农业学报, 2013, 21(6): 689-699.
[52]  沈宝云, 余斌, 王文, 等. 腐植酸铵、有机肥、微生物肥配施在克服甘肃干旱地区马铃薯连作障碍上的应用研究. 中国土壤与肥料, 2011, (2): 68-70.
[53]  余斌, 沈宝云, 王文, 等. 连作障碍对干旱地区不同马铃薯品种的影响. 甘肃农业大学学报, 2012, 47(4): 43-47.
[54]  李继平, 李敏权, 惠娜娜, 等. 马铃薯连作田土壤中主要病原真菌的种群动态变化规律. 草业学报, 2013, 22(4): 147-152. 浏览
[55]  孟品品, 刘星, 邱慧珍, 等. 连作马铃薯根际土壤真菌种群结构及其生物效应. 应用生态学报, 2012, 23(11): 3079-3086.
[56]  邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2008: 112-113.
[57]  王丽丽, 石俊雄, 袁赛飞, 等. 微生物有机肥结合土壤改良剂防治烟草青枯病. 土壤学报, 2013, 50(1): 150-156.
[58]  阮维斌, 王敬国, 张福锁, 等. 溴甲烷土壤灭菌对大豆苗期根系生长的影响. 生态学报, 2001, 21(5): 759-764.
[59]  张树生, 杨兴明, 茆泽圣, 等. 连作土灭菌对黄瓜生长和土壤微生物区系的影响. 生态学报, 2007, 27(5): 1809-1817.
[60]  古丽君, 徐秉良, 梁巧兰, 等. 生防木霉对草坪土壤微生物区系的影响及定殖能力研究. 草业学报, 2013, 22(3): 321-326. 浏览

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133