全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

不同干湿交替频率对芦苇生长和生理的影响

DOI: 10.11686/cyxb20150310, PP. 99-107

Keywords: 干湿交替,芦苇,器官,光合作用,盐离子

Full-Text   Cite this paper   Add to My Lib

Abstract:

松嫩平原西部芦苇沼泽是集多种环境特征于一体的生态系统,少降雨、土壤盐碱化导致湿地大面积萎缩退化。水是湿地结构和功能发挥的最关键因子,影响着生物地球化学循环、植被以及其他生物种群。为了节约和有效利用水资源,本文将干湿交替(35%的田间持水量和10cm的淹水层分别界定为本文的干和湿状态)应用在芦苇的发育过程中,分析芦苇不同发育期对水分的需求特征,以及其生长和光合生理响应,地上和地下器官对无机离子的吸收和积累。通过在生长季末对芦苇株高、光合特征、地上地下器官生物量和离子含量的分析测试,结果表明与长期干旱和湿润条件相比,在芦苇适当的发育阶段实施1、2和4次干湿交替,可有效提高芦苇的生物量和光合速率,并积累较少的盐离子。随着干湿交替的频次增加,芦苇受干旱或者淹水单次胁迫的时间越少,不仅缓解了极端水分条件对芦苇的影响,而且促进了其生长发育。在芦苇生长发育前期补水(6、7和8月份),能显著促进芦苇的增长和生物量积累,光合能力显著增强,并且芦苇器官中含有较少的Na+。其中用水量较少的2次干湿交替(C2)和4次干湿交替(D2)有利于盐碱湿地芦苇的高产和高质培育。在芦苇生长后期补水的地上器官积累更多的Na+,因此可考虑在8、9月份向退化的盐碱芦苇草甸灌水,利用收割芦苇地上生物量,作为去除土壤钠盐离子的一种方法。

References

[1]  Tian X, Bu Z J, Yang Y F, et al. Response of the wetland vegetation to dry-wet alternation habitat in the Songnen Plain of China. Wetland Science, 2004, 2(2): 123-127.
[2]  Nicholas S. Plant resistance to environmental stress. Current Opinion Biotechnology, 1998, 9: 214-219.
[3]  Wang L, Hu J M, Song C C, et al. Effects of water level on the rhizomatic germination and growth of typical wetland plants in Sanjiang Plain. Chinese Journal of Applied Ecology, 2007, 18(11): 2432-2437.
[4]  Wang H Y, Chen J K, Zhou J. Influence of water level gradient on plant growth, reproduction and biomass allocation of wetland plant species. Acta Phytoecologica Sinica, 1999, 23(3): 269-274.
[5]  Parolin P, Lucas C, Piedade F M T, et al. Drought responses of flood-tolerant trees in Amazonian floodplains. Annals of Botany, 2010, 105: 129-139.
[6]  Almeida-Rodriguez A M, Cooke J E K, Yeh F, et al. Functional characterization of drought-responsive aquaporins in Populus balsamifera and populus simonii×balsamifera clones with different drought resistance strategies. Physiologia Plantarum, 2010, 140: 321-333.
[7]  Shao H B, Chu L Y, Jaleel C A, et al. Water-deficit stress-induced anatomical changes in higher plants. Plant Biology and Pathology, 2008, 331: 215-225.
[8]  Li C, Berninger F, Koskela J, et al. Drought responses of Eucalyptus microtheca F. Muell. Provenances depend on seasonality of rainfall in their place of origin. Australian Journal of Plant Physiology, 2000, 27: 231-238.
[9]  Li X Y, Liu X T, Li X J, et al. Growth and physiological response of organs of Phragmites australis to different water compensation in degraded wetlands. Wetland Science, 2012, 10(1): 23-31.
[10]  Li X Y, Lin J X, Li X J, et al. Growth adaptation and Na+ and K+ metabolism responses of Leymus chinensis seedlings under salt and alkali stresses. Acta Prataculturae Sinica, 2013, 22(1): 201-209.
[11]  Nakai A, Yurugi Y, Kisanuki H. Stress response in Salix gracilistyla cutting subjected to repetitive alternate flooding and drought. Trees, 2010, 24: 1087-1095.
[12]  参考文献:
[13]  赵魁义. 中国沼泽志. 北京: 科学出版社, 1999.
[14]  刘兴土. 东北湿地. 北京: 科学出版社, 2005.
[15]  杨富亿, 李秀军, 刘兴土, 等. 松嫩平原退化芦苇湿地恢复模式. 湿地科学, 2009, 7(4): 306-313.
[16]  张颖, 郑西来, 伍成成, 等. 辽河口湿地芦苇叶片蒸腾及其与影响因子关系研究. 湿地科学, 2011, 9(3): 227-232.
[17]  陈铭, 张树清, 傅晓阳, 等. 吉林省西部湿地资源动态变化研究. 干旱区资源与环境, 2006, 20(5): 21-24.
[18]  孙法德, 王勇, 石义强, 等. 黑龙江省的湿地保护与开发利用. 国土与自然资源研究, 2004, 1: 44-45.
[19]  李冬林, 张纪林, 潘伟明, 等. 地表积水状况对芦苇形态结构及生物量的影响. 江苏林业科技, 2009, 36(3): 17-20.
[20]  苏芳莉, 张潇予, 郭成久, 等. 地下水埋深与芦苇生长的响应机制研究. 灌溉排水学报, 2010, 29(6): 129-132.
[21]  陈国仓, 张承烈. 不同生境芦苇形态特征和茎秆解剖结构的比较研究. 兰州大学学报(自然科学学报版), 1991, 27(1): 91-98.
[22]  张友民, 刘兴土, 孙长占, 等. 三江平原芦苇营养器官的生态解剖学研究. 吉林农业大学学报, 2003, 25(2): 161-163.
[23]  庄瑶, 孙一香, 王中生, 等. 芦苇生态型研究进展. 生态学报, 2010, 30(8): 2173-2181.
[24]  崔保山, 赵欣胜, 杨志峰, 等. 黄河三角洲芦苇种群特征对水深环境梯度的响应. 生态学报, 2006, 26(5): 1533-1640.
[25]  卜兆君, 田讯. 人为补水对扎龙河漫滩湿地植被的影响. 湿地科学与管理, 2007, 3(4): 44-48.
[26]  田讯, 卜兆君, 杨允菲, 等. 松嫩平原湿地植被对生境干-湿交替的响应. 湿地科学, 2004, 2(2): 123-127.
[27]  王丽, 胡金明, 宋长春, 等. 水位梯度对三江平原典型湿地植物根茎萌发及生长的影响. 应用生态学报, 2007, 18(11): 2432-2437.
[28]  王海洋, 陈家宽, 周进. 水位梯度对湿地植物生长, 繁殖和生物量分配的影响. 生态学报, 1999, 23(3): 269-274.
[29]  李晓宇, 蔺吉祥, 李秀军, 等. 羊草苗期对盐碱胁迫的生长适应及Na+、K+代谢响应. 草业学报, 2013, 22(1): 201-209.
[30]  Mitsch W J, Gosselink J G. Wetlands. New York: John Wiley and Sons, 2000.
[31]  Zhao K Y. Chinese Marshes. Beijing: Science Press, 1999.
[32]  Liu X T. Northeast Wetlands. Beijing: Science Press, 2005.
[33]  Liu H Y, Zhang S K, Lu X G. Wetland landscape structure and the spatial-temporal changes in 50 years in the Sanjiang Plain. Acta Geographica Sinica, 2004, 59(3): 391-400.
[34]  Yang F Y, Li X J, Liu X T, et al. Recovery pattern of degraded saline-alkali reed wetland in the Songnen Plain. Wetland Science, 2009, 7(4): 306-313.
[35]  Ruzi M, Velasco J. Nutrient bioaccumulation in Phragmites australis: Management tool for reduction of pollution in the Mar Menor. Water, Air and Soil Pollution, 2010, 205: 173-185.
[36]  Zhang Y, Zheng X L, Wu C C, et al. Simulation experimental about transpiration characteristics of Phragmites australis leaf in Liaohe estuary wetlands. Wetland Science, 2011, 9(3): 227-232.
[37]  Baldatoni D, Altoni A, Di Tomamasi P, et al. Assessment of macro and microelement accumulation capability of two aquatic plants. Environmental Pollution, 2003, 130: 149-156.
[38]  Kiedrzynska E, Wagner I, Zalewski M. Quantification of phosphorus retention efficiency by floodplain vegetation and a management strategy for a eutrophic reservoir restoration. Ecological Engineering, 2008, 33: 127-131.
[39]  Line R, Suzanne C, Jean L B. Does prolonged flooding prevent or enhance regeneration and growth of Sphagnum. Aquatic Botany, 2002, 74(4): 327-341.
[40]  Chen M, Zhang S Q, Fu X Y, et al. Study on changes of the wetlands in west of Jilin Province. Journal of Arid Land Resources and Environment, 2006, 20(5): 21-24.
[41]  Sun F D, Wang Y, Shi Y Q, et al. Protection and development of wetlands in Heilongjiang Province. Territory and Natural Resource Study, 2004, 1: 44-45.
[42]  Li D L, Zhang J L, Pan W M, et al. Effects of surface water accumulation on morphological structure and biomass of Phragmites australis. Journal of Jiangsu Forestry Science and Technology, 2009, 36(3): 17-20.
[43]  Vretare V, Weisner S E B, Strand J A, et al. Phenotypic plasticity in Phragmites australis as a functional response to water depth. Aquatic Botany, 2010, 69(2, 4): 263-274.
[44]  Engloner A I. Annual growth dynamics and morphological differences of reed (Phragmites australis Trin. ex Steudel) in relation of water supply. Flora, 2004, 199(3): 515-523.
[45]  Su F L, Zhang X Y, Guo C J, et al. The response mechanism of groundwater depth and reed growth. Journal of Irrigation and Drainage, 2010, 29(6): 129-132.
[46]  Chen G C, Zhang C L. Comparative studies on morphological character and anatomical structure of fibre in stalk of four distinct types of Phragmites Communis Trin. Journal of Lanzhou University (Natural Sciences), 1991, 27(1): 91-98.
[47]  Zhang Y M, Liu X T, Sun C Z, et al. Study on ecological anatomy of vegetative organs of Phragmites australis in Sanjiang Plain. Journal of Jilin Agricultural University, 2003, 25(2): 161-163.
[48]  Zhuang Y, Sun Y X, Wang Z S, et al. Research advances in ecotypes of Phragmites australis. Acta Ecologica Sinica, 2010, 30(8): 2173-2181.
[49]  Cui B S, Zhao X S, Yang Z F, et al. The response of reed community to the environment gradient of water depth in the Yellow River delta. Acta Ecologica Sinica, 2006, 26(5): 1533-1640.
[50]  Bu Z J, Tian X. Effects of artificial water-supply on vegetation in Zhalong floodplain wetland. Wetland Science and Management, 2007, 3(4): 44-48.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133