全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

外源甜菜碱对匍匐翦股颖的抗旱性调控作用分析

DOI: 10.11686/cyxb20150308, PP. 80-88

Keywords: 甜菜碱,匍匐翦股颖,干旱胁迫,渗透调节,抗氧化酶

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了探究外源甜菜碱(GB)对干旱胁迫及复水条件下匍匐翦股颖的生长调控作用,以匍匐翦股颖(T-1)成熟草皮为材料,移栽至温室适应性生长50d后,分别用0,50,100,200mmol/L的GB喷施匍匐翦股颖叶片,3d后进行人工模拟干旱处理和复水处理,研究在不同水分条件下,外源GB对匍匐翦股颖坪观质量、叶片相对含水量、细胞膜透性、叶绿素、游离脯氨酸、可溶性蛋白、丙二醛(MDA)含量以及抗氧化酶活性的影响。结果表明,干旱胁迫降低了匍匐翦股颖的坪观质量、相对含水量和叶绿素含量,提高了细胞膜透性、游离脯氨酸含量、可溶性蛋白含量、MDA含量和SOD、CAT、POD活性,而外施一定浓度的GB可使干旱胁迫引起的坪观质量、叶片相对含水量和叶绿素含量的下降幅度显著降低,同时相对提高了叶片脯氨酸含量、可溶性蛋白含量以及SOD和CAT活性,并降低了细胞膜透性和MDA含量,复水后,各指标均得到不同程度的恢复,其中GB处理恢复甚至优于干旱处理前的水平。本研究结果表明,外施一定浓度的GB对干旱胁迫下匍匐翦股颖的抗旱性具有增效作用,并且在复水后使匍匐翦股颖积累了更多对干旱逆境的防御能力,使其能够更好地适应干旱胁迫环境。综合各项指标,100mmol/L的GB处理最有利于提高匍匐翦股颖的抗旱性。

References

[1]  Xin J N, Han L B, liu J, et al. Transformation of kentucky Bluegrass (Poa pratensis L.) by particle bombardment. China Biotechnology, 2006, 26(8): 10-14.
[2]  Liang T B, Zhang J L, Tian L, et al. Effects of exogenous glycine betaine and proline on antioxidant metabolism of flue-cured tobacco under drought stress. Tobacco Science & Technology, 2013, (2): 68-71.
[3]  Muhammad Aown Sammar Raza M F S, Ashraf M Y, Ali A, et al. Glycine betaine applied under drought improved the physiological efficiency of wheat (Triticum aestivum L.) plant. Soil & Environment, 2012, 31(1): 67-71.
[4]  Sun J X. Turf Science. Beijing: China Agriculture Press, 1995.
[5]  Turgeon A J. Turfgrass Management (4th Ed). Upper Saddle River, NJ: Prentice-Hall, 1996.
[6]  Hu L, Hu T, Zhang X, et al. Exogenous glycine betaine ameliorates the adverse effect of salt stress on perennial ryegrass. Journal of the American Society for Horticultural Science, 2012, 137(1): 38-46.
[7]  Blum A, Ebercon A. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science, 1981, 21: 43-47.
[8]  Zhang J Z, Zhang Q Y, Sun G F, et al. Effects of drought stress and re-watering on growth and photosynthesis of hosta. Acta Prataculturae Sinica, 2014, 23(1): 167-176.
[9]  Ma Q, Wang W, Li Y, et al. Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar-applied glycine betaine. Journal of Plant Physiology, 2006, 163(2): 165-175.
[10]  Hou P F, Ma J Q, Zhao P F, et al. Effects of betaine on chloroplast protective enzymes and psbA gene expression in wheat seedlings under drought stress. Acta Agronomica Sinica, 2013, 39(7): 1319-1324.
[11]  Xu Y F, Jin J W, Chen H, et al. Physiological mechanism of turfgrass shadow tolerance. Acta Agrestia Sinica, 2011, 19(6): 1064-1069.
[12]  Wang G P, Li F, Zhang J, et al. Overaccumulation of glycine betaine enhances tolerance of the photosynthetic apparatus to drought and heat stress in wheat. Photosynthetica, 2010, 48(1): 30-41.
[13]  Li Z, Peng Y, Su X Y. Physiological responses of white clover by different leaf types associated with anti-oxidative enzyme protection and osmotic adjustment under drought stress. Acta Prataculturae Sinica, 2013, 22(2): 257-263.
[14]  Jia X J, Dong L H, Ding C B, et al. Effects of drought stress on reactive oxygen species and their scavenging systems in chlorophytum capense var. medio-pictum leaf. Acta Prataculturae Sinica, 2013, 22(5): 248-255.
[15]  Dacosta M, Bingru H. Changes in antioxidant enzyme activities and lipid peroxidation for bentgrass species in response to drought stress. Journal of the American Society for Horticultural Science, 2007, 132(3): 319.
[16]  Wani S H, Singh N B, Haribhushan A, et al. Compatible solute engineering in plants for abiotic stress tolerance - role of glycine betaine. Current Genomics, 2013, 14(3): 157-165.
[17]  Yang Z, Yu J, Merewitz E, et al. Differential effects of abscisic acid and glycine betaine on physiological responses to drought and salinity stress for two perennial grass species. Journal of the American Society for Horticultural Science, 2012, 137(2): 96-106.
[18]  He C, Zhang W, Gao Q, et al. Enhancement of drought resistance and biomass by increasing the amount of glycine betaine in wheat seedlings. Euphytica, 2011, 177(2): 151-167.
[19]  参考文献:
[20]  俞乐,刘拥海,周丽萍,等. 干旱胁迫下结缕草叶片抗坏血酸与相关生理指标变化的品种差异研究. 草业学报, 2013, 22(4): 106-115. 浏览
[21]  刘凤华,郭岩,谷冬梅,等. 转甜菜碱醛脱氢酶基因植物的耐盐性研究. 遗传学报, 1997, (1): 56-60.
[22]  梁峥,骆爱玲. 甜菜碱和甜菜碱合成酶. 植物生理学通讯, 1995, (1): 1-8.
[23]  黄义春,李建民,段留生,等. 甜菜碱对玉米幼苗抗旱性的诱导效应. 玉米科学, 2011, 19(1): 95-100.
[24]  信金娜,韩烈保,刘君,等. 基因枪转化法获得草地早熟禾(Poa pratensis L.)转基因植株. 中国生物工程杂志, 2006, 26(8): 10-14.
[25]  梁太波,张景玲,田雷,等. 干旱胁迫下外源甜菜碱和脯氨酸对烤烟抗氧化代谢的影响. 烟草科技, 2013, (2): 68-71.
[26]  孙吉雄. 草坪学. 北京: 中国农业出版社, 1995.
[27]  刘建新,王鑫,王瑞娟,等. 黑麦草对NaHCO3胁迫的光合生理响应. 草业学报, 2012, 21(3): 184-190. 浏览
[28]  Reddy A R, Chaitanya K V, Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology, 2004, 161(11): 1189-1202.
[29]  Kel P M, Rkk Inen J K, Somersalo S. Effect of glycine betaine on chloroplast ultrastructure, chlorophyll and protein content, and rubpco activities in tomato grown under drought or salinity. Biologia Plantarum, 2000, 43(3): 471-475.
[30]  Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 601-639.
[31]  Yu L, Liu Y H, Zhou L P, et al. A study on the changes of ascorbic acid and related physiological indexes in different cultivars of Zoysia under drought stress. Acta Prataculturae Sinica, 2013, 22(4): 106-115.
[32]  Liu F H, Guo Y, Gu D M, et al. Salt tolerance of transgenic plants with BADH cDNA. Acta Genetica Sinica, 1997, (1): 56-60.
[33]  Liang Z, Luo A L. Betaine and betaine synthetase. Plant Physiology Communications, 1995, (1): 1-8.
[34]  Sakamoto A, Murata N. Genetic engineering of glycine betaine synthesis in plants: current status and implications for enhancement of stress tolerance. Journal of Experimental Botany, 2000, 51(342): 81-88.
[35]  Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 2007, 59(2): 206-216.
[36]  Agboma P C, Sinclair T R, Jokinen K, et al. An evaluation of the effect of exogenous glycine betaine on the growth and yield of soybean: timing of application, watering regimes and cultivars. Field Crops Research, 1997, 54(1): 51-64.
[37]  Iqbal N, Ashraf Y, Ashraf M. Modulation of endogenous levels of some key organic metabolites by exogenous application of glycine betaine in drought stressed plants of sunflower (Helianthus annuus L.). Plant Growth Regulation, 2011, 63(1): 7-12.
[38]  Huang Y C, Li J M, Duan L S, et al. Drought resistance of maize seedlings induced by betaine. Journal of Maize Sciences, 2011, 19(1): 95-100.
[39]  Lv S, Yang A, Zhang K, et al. Increase of glycine betaine synthesis improves drought tolerance in cotton. Molecular Breeding, 2007, 20(3): 233-248.
[40]  Liu J X, Wang X, Wang R J, et al. Photosynthetic physiological response of lolium perenne to NaHCO3 stress. Acta Prataculturae Sinica, 2012, 21(3): 184-190.
[41]  Zhang D Z, Wang P H, Zhao H X. Determination of the content of free proline in wheat leaves. Plant Physiology Communications, 1990, 4: 62-65.
[42]  Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 1976, 72: 248-254.
[43]  Dhindsa R S, Plumb-Dhindsa, Thorpe T A. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. MedSci Entry for Journal of Experimental Botany, 1981, 32: 93-101.
[44]  Zhang J X, Kirkham M B. Enzymatic responses of the ascorbate-glutathione cycle to drought in sorghum and sunflower plants. Plant Science, 1996, 2(113): 139-147.
[45]  Chance B, Maehly A C. Assay of catalase and peroxidase. Methodes in Enzymology, 1955, 2: 764-775.
[46]  Liu Z Q, Zhang S C. Plant Resistance Physiology. Beijing: China Agriculture Press, 1994: 369-382.
[47]  Costa M A, Pinheiro H A, Shimizu E S C, et al. Lipid peroxidation, chloroplastic pigments and antioxidant strategies in Carapa guianensis (Aubl.) subjected to water-deficit and short-term rewetting. Trees, 2010, 24(2): 275-283.
[48]  张殿忠,汪沛洪,赵会贤. 测定小麦叶片游离脯氨酸含量的方法. 植物生理学通讯, 1990, 4: 62-65.
[49]  刘祖琪,张石诚. 植物抗逆生理学. 北京: 中国农业出版社, 1994: 369-382.
[50]  张金政,张起源,孙国峰,等. 干旱胁迫及复水对玉簪生长和光合作用的影响. 草业学报, 2014, 23(1): 167-176. 浏览
[51]  侯鹏飞,马俊青,赵鹏飞,等. 外源甜菜碱对干旱胁迫下小麦幼苗叶绿体抗氧化酶及psbA基因表达的调节. 作物学报, 2013, 39(7): 1319-1324.
[52]  许岳飞,金晶炜,陈浩,等. 草坪植物耐弱光机理研究进展. 草地学报, 2011, 19(6): 1064-1069.
[53]  李州,彭燕,苏星源. 不同叶型白三叶抗氧化保护及渗透调节生理对干旱胁迫的响应. 草业学报, 2013, 22(2): 257-263. 浏览
[54]  贾学静,董立花,丁春邦,等. 干旱胁迫对金心吊兰叶片活性氧及其清除系统的影响. 草业学报, 2013, 22(5): 248-255. 浏览

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133