全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

高寒灌丛土壤温室气体释放对添加不同形态氮素的响应

DOI: 10.11686/cyxb20150302, PP. 20-29

Keywords: 灌丛土壤,氮添加,温室气体,硝化作用,DOC,全球增温潜能

Full-Text   Cite this paper   Add to My Lib

Abstract:

为探索不同形态氮素输入对青藏高原高寒灌丛土壤CO2、N2O和CH4排放的影响,采集青藏高原东部金露梅高寒灌丛土壤,设置1个对照(CK)和3个添加不同形态氮素的处理(NH4Cl,NH4NO3,KNO3),在实验室恒温15℃下进行培养,分析了土壤CO2、N2O和CH4的释放量以及土壤NH4+,NO3-和可溶性有机碳(DOC)含量。结果表明:1)所有氮素处理抑制了高寒灌丛土壤CO2的排放,土壤CO2排放量与DOC浓度呈显著正相关关系;2)所有氮素处理显著增加了土壤N2O的排放,而且以添加NO3--N增加的N2O最为显著;3)高寒灌丛土壤N2O的产生过程以反硝化作用为主;4)添加不同形态氮素对高寒灌丛土壤CH4吸收没有显著影响。5)不同形态氮素施入后,高寒灌丛土壤温室气体全球增温潜能(GWP)顺序:KNO3>NH4NO3>NH4Cl>CK。

References

[1]  Lü C Q, Tian H Q. Spatial and temporal patterns of nitrogen deposition in china: Synthesis of observational data. Journal of Geophysical Research, 2007, 112(D22): 1-10.
[2]  Galloway J N, Dentener F J, Capone D G, et al. Nitrogen cycles: past, present, and future. Biogeochemistry, 2004, 70(2): 153-226.
[3]  Zhu T H, Cheng S L, Fang H J, et al. Early responses of soil CO2 emission to simulating atmospheric nitrogen deposition in an alpine meadow on the Qinghai Tibetan Plateau. Acta Ecologica Sinica, 2011, 10: 2687-2696.
[4]  Bai J B, Xu X L, Song M H, et al. Effect of temperature and nitrogen input on soil carbon mineralization in three alpine grassland on the Tibetan Plateau. Ecology and Environmental Sciences, 2011, (5): 855-859.
[5]  张亚丽, 张娟, 沈其荣, 等.秸秆生物有机肥的施用对土壤供氮能力的影响.应用生态学报, 2002, 13(12): 1575-1578.
[6]  James N, Galloway, Ellis B, et al. 活性氮和世界: 200年的变化. AMBIO-人类环境杂志, 2002, (2): 64-71.
[7]  郑循华, 符聪斌, 徐星凯, 等. 亚洲氮循环案例研究. AMBIO-人类环境杂志, 2002, (2): 79-87.
[8]  宋学贵, 胡庭兴, 鲜骏仁, 等. 川西南常绿阔叶林土壤呼吸及其对氮沉降的响应. 水土保持学报, 2007, (4): 168-172.
[9]  莫江明, 方运霆, 徐国良, 等. 鼎湖山苗圃和主要森林土壤CO2排放和CH4吸收对模拟N沉降的短期响应. 生态学报, 2005, (4): 682-690.
[10]  胡正华, 李涵茂, 杨艳萍, 等. 模拟氮沉降对北亚热带落叶阔叶林土壤呼吸的影响. 环境科学, 2010, (8): 1726-1732.
[11]  李仁洪, 涂利华, 胡庭兴, 等. 模拟氮沉降对华西雨屏区慈竹林土壤呼吸的影响. 应用生态学报, 2010, (7): 1649-1655.
[12]  任继周, 林慧龙. 草地土壤有机碳储量模拟技术研究. 草业学报, 2013, (6): 280-294.
[13]  王根绪, 程国栋, 沈永平. 青藏高原草地土壤有机碳库及其全球意义. 冰川冻土, 2002, (6): 693-700.
[14]  陈文业, 张瑾, 戚登臣, 等. 黄河首曲-玛曲县高寒草甸沙化动态演变趋势及其驱动因子定量分析. 草业学报, 2013, (2): 11-21.
[15]  朱天鸿, 程淑兰, 方华军, 等. 青藏高原高寒草甸土壤CO2排放对模拟氮沉降的早期响应. 生态学报, 2011, 10: 2687-2696.
[16]  白洁冰, 徐兴良, 宋明华, 等. 温度和氮素输入对青藏高原三种高寒草地土壤碳矿化的影响. 生态环境学报, 2011, (5): 855-859.
[17]  张裴雷, 方华军, 程淑兰, 等. 增氮对青藏高原东缘高寒草甸土壤甲烷吸收的早期影响. 生态学报, 2013, 13: 4101-4110.
[18]  高俊琴, 欧阳华, 张锋, 等. 若尔盖高寒湿地土壤氮矿化对温度和湿度的响应. 湿地科学, 2008, (2): 229-234.
[19]  王义祥, 王峰, 翁伯琦, 等. 生草栽培对油桃园土壤有机碳矿化的影响. 草业学报, 2013, 22(6): 86-92. 浏览
[20]  王在摸, 乐炎舟, 陈伟民. 高山草甸土氨挥发的研究. 高寒草甸生态系统, 1993, (3): 219-226.
[21]  孙文涛, 肖千明, 娄春荣, 等. 土壤中甲烷的形成、排放及影响因素. 杂粮作物, 2000, (5): 44-47.
[22]  肖辉林. 大气氮沉降对森林土壤酸化的影响. 林业科学, 2001, 37(4): 111-116.
[23]  李琳, 胡立峰, 陈阜, 等. 长期不同施肥类型对稻田甲烷和氧化亚氮排放速率的影响. 农业环境科学学报, 2006, 25(增刊): 707-710.
[24]  齐玉春, 董云社. 土壤氧化亚氮产生、排放及其影响因素. 地理学报, 1999, (6): 534-542.
[25]  宋文质, 王少彬, 苏维瀚, 等. 我国农田土壤的主要温室气体CO2、CH4和N2O排放研究. 环境科学, 1996, (1): 85-88.
[26]  郑宪清.不同水热条件下三种农田土壤中氨化和硝化作用的变化初探. 南京: 南京农业大学, 2008.
[27]  Peng Q, Dong Y S, Qi Y C. Influence of external nitrogen input on key processes of carbon cycle in terrestrial ecosystem. Advances in Earth Science, 2008, 23(8): 874-883.
[28]  Liu D Y, Song C C. Influence of external nitrogen input on soil organic carbon mineralization and litter decomposition. Chinese Journal of Soil Science, 2008, 39(3): 675-680.
[29]  Zhang Y L, Zhang J, Shen Q R, et al. Effect of combined application of bioorganic manure and inorganic nitrogen fertilizer on soil nitrogen supplying characteristics. Chinese Journal of Applied Ecology, 2002, 13(12): 1575-1578.
[30]  James N, Galloway, Ellis B, et al. Reactive nitrogen and the World: 200 years of change. AMBIO-Journal of Human Environment, 2002, (2): 64-71.
[31]  Galloway J N, Aber J D, Erisman J W, et al. The nitrogen cascade. Bioscience, 2003, 53(4): 341-356.
[32]  Zheng X H, Fu C B, Xu X K, et al. The asian nitrogen cycle case study. AMBIO-Journal of Human Environment, 2002, (2): 79-87.
[33]  Tietema A, Wright R F, Blank K, et al. NITREX: The timing of response of coniferous forest ecosystems to experimentally changed deposition of nitrogen. Water, Air and Soil Pollution, 1995, 85: 1623-1628.
[34]  Wright R F, Roelofs J G M, Bredemeier M, et al. NITREX: Responses of coniferous forest ecosystems to experimentally changed deposition of nitrogen. Forest Ecology and Management, 1995, 71: 163-169.
[35]  Aber J D, McDowell W H, Nadelhoffer K J, et al. Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. Bio Science, 1998, 48: 921-934.
[36]  Flanagan P W, Van C K. Nutrient cycling in relation to decomposition and organic-matter quality in taiga ecosystems. Canadian Journal of Forest Research, 1983, 13(5): 795-817.
[37]  Song X G, Hu T X, Xian J R, et al. Soil respiration and its response to simulated nitrogen deposition in evergreen broad-leaved forest, southwest Sichuan. Journal of Soil and Water Conservation, 2007, (4): 168-172.
[38]  Bowden R D, Davidson E, Savage K, et al. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology and Management, 2004, 196(1): 43-56.
[39]  Micks P, Aber J D, Boone R D, et al. Short-term soil respiration and nitrogen immobilization response to nitrogen applications in control and nitrogen-enriched temperate forests. Forest Ecology and Management, 2004, 196(1): 57-70.
[40]  Mo J M, Fang Y T, Xu G L, et al. The short-term responses of soil CO2 emission and CH4 uptake to simulated N deposition in nursery and forests of Dinghushan in subtropical China. Acta Ecologica Sinica, 2005, (4): 682-690.
[41]  Hu Z H, Li H M, Yang Y P, et al. Effects of simulated nitrogen deposition impact on soil respiration in the northern subtropical deciduous forest. Chinese Journal of Environmental Science, 2010, (8): 1726-1732.
[42]  Li R H, Tu L H, Hu T X, et al. Effects of simulated nitrogen deposition on soil respiration in a Neosinocalamus affinis plantation in Rainy Area of West China. Chinese Journal of Applied Ecology, 2010, (7): 1649-1655.
[43]  Ren J Z, Lin H L. Grassland soil organic carbon storage technology research. Acta Prataculturae Sinica, 2013, (6): 280-294.
[44]  Wang G X, Cheng G D, Shen Y P. Soil organic carbon pool of grasslands on the Tibetan Plateau and its global implication. Journal of Glaciology and Geocryology, 2002, (6): 693-700.
[45]  Wang G, Qian J, Cheng G, et al. Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. Science of the Total Environment, 2002, 91: 207-217.
[46]  Chen W Y, Zhang J, Qi D C, et al. Desertification dynamic change trend and quantitative analysis of driving factors of alpine meadow in Maqu County in the First Meander of the Yellow River. Acta Prataculturae Sinica, 2013, (2): 11-21.
[47]  Zhang P L, Fang H J, Cheng S L, et al. The early effects of nitrogen addition on CH4 uptake in an alpine meadow soil on the Eastern Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 2013, 13: 4101-4110.
[48]  Gao J Q, Ou Y H, Zhang F, et al. The response of soil nitrogen mineralization to temperature and water moisture in Zoige alpine wetland. Wetland Science, 2008, (2): 229-234.
[49]  Wang Y X, Wang F, Wong B Q, et al. The effect of grass cultivation on soil organic carbon mineralization in Amygdalus persica garden. Acta Prataculturae Sinica, 2013, (6): 86-92.
[50]  Houghton J T, Meirafilho L G, Callender B A, et al. IPCC, Climate change 1995: The scientific of climate change. Cambridge, UK: Cambridge University Press, 1996.
[51]  Wang Z M, Le Y Z, Chen W M. The research of alpine meadow soil ammonia volatilization. Alpine Meadow Ecosystem, 1993, (3): 219-226.
[52]  Sun W T, Xiao Q M, Lou C R, et al. The formation, emission and influencing factors of CH4 in the soil. Rain Fed Crops, 2000, (5): 44-47.
[53]  Lee K, Jose S. Soil respiration, fine root production, and microbial biomass in cottonwood and loblolly pine plantations along a nitrogen fertilization gradient. Forest Ecology and Management, 2003, 185: 263-273.
[54]  Moscatelli M C, Lagomarsino A, De Angelis P, et al. Seasonality of soil biological properties in a poplar plantation growing under elevated atmospheric CO2. Applied Soil Ecology, 2005, 30: 162-173.
[55]  Fang C M, Moncrieff J B. The variation of soil microbial respiration with depth in relation to soil carbon composition. Plant and Soil, 2005, 268: 247-253.
[56]  Compton J, Watrud L S, Porteus L A, et al. Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest. Forest Ecology and Management, 2004, 196: 143-158.
[57]  Xiao H L. Effects of atmospheric nitrogen deposition on forest soil acidification. Scientia Silvae Sinicae, 2001, 37(4): 111-116.
[58]  Bengtson P, Bengtsson G. Rapid turnover of DOC in temperate forests accounts for increased CO2 production at elevated temperatures. Ecology Letters, 2007, 10: 783-790.
[59]  Cai Z C, Xing G X, Yan X Y, et al. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management.Plant and Soil,1997,196(1): 7-14.
[60]  Li L, Hu L F, Chen F, et al. Effects of different long-term fertilization on emission of CH4 and N2O from paddy soil. Journal of Agro-Environment Science, 2006, 25(Supplement): 707-710.
[61]  Qi Y C, Dong Y S. The formation, emission and influencing factors of N2O in the soil. Acta Geographica Sinica, 1999, (6): 534-542.
[62]  Song W Z, Wang S B, Su W H, et al. The research of main greenhouse gases(CO2, CH4 and N2O ) emissions in Chinese farmland. Chinese Journal of Environmental Science, 1996, (1): 85-88.
[63]  Zheng X Q. The preliminary of ammonification and nitrification changes in three kinds of farmland soil under different hydrothermal conditions. Nanjing: Nanjing Agricultural University, 2008.
[64]  参考文献:
[65]  彭琴, 董云社, 齐玉春.氮输入对陆地生态系统碳循环关键过程的影响.地球科学进展, 2008, 23(8): 874-883.
[66]  刘德燕, 宋长春.外源氮输入对土壤有机碳矿化和调落物分解的影响.土壤通报, 2008, 39(3): 675-680.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133