全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

白茅解剖结构和屏障结构特征研究

DOI: 10.11686/cyxb20150322, PP. 213-218

Keywords: 白茅,解剖结构,质外体屏障结构,组织化学,通气组织

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用光学显微镜和荧光显微镜对白茅进行了解剖学和组织化学研究,结果表明:1)白茅不定根解剖结构为表皮、外皮层、厚壁机械组织层、皮层、内皮层和中柱;根茎结构为角质层、表皮、周缘厚壁机械组织层、皮层、厚壁机械组织层和髓。2)不定根具内侧内皮层及其邻近皮层细胞、外侧表皮和皮下层组成的屏障结构;根茎具内侧厚壁机械组织层、外侧角质层和周缘厚壁机械组织层组成的屏障结构,屏障结构胞壁具凯氏带、木栓质和木质素沉积的组织化学特点。3)白茅通气组织包括根中通气组织,茎皮层通气组织和维管束中的气腔。4)白茅的屏障结构和解剖结构是其适应湿地环境的重要特征,但是根茎周缘厚壁机械组织层没有栓质化,髓部没有髓腔,推测其在湿地环境中分布有一定的局限性。

References

[1]  Soukup A, Votrubová O, íková H. Development of anatomical structure of roots of Phragmites australis. New Phytologist, 2002, 153: 277-287.
[2]  Soukup A, Armstrong W, Schreiber L, et al. Apoplastic barriers to radial oxygen loss and solute penetration: a chemical and functional comparison of the exodermis of two wetland species, Phragmites australis and Glyceria maxima. New Phytologist, 2007, 173: 264-278.
[3]  Yang C D, Zhang X, Zhou C Y, et al. Root and stem anatomy and histochemistry of four grasses from the Jianghan floodplain along the Yangtze River, China. Flora, 2011, 206: 653-661.
[4]  Cheng X Y, Liu M, Zhang X X, et al. Vegetative organ structures of Ranunculaceae in Northeastern China and notes on systematic implications. Acta Prataculturae Sinica,2014,23(3):62-74.
[5]  Sun T H, Liu M, Sun X Q, et al. Morphological study on the leaf structures of Potentilla in Northeastern China and its taxonomic value (Rosaceae). Acta Prataculturae Sinica, 2014,23(3):75-84.
[6]  Zhang X X, Liu M, Cheng X Y, et al. Comparative study of the morphological and anatomical features of Lindernia procumbens in different ecological environments (Lindernuacea). Acta Prataculturae Sinica, 2014, 23(2):235-242.
[7]  Pauluzzi G, Divol F, Puig J, et al. Surfing along the root ground tissue gene network. Developmental Biology, 2012, 365: 14-22.
[8]  Naseer S, Leea Y, Lapierre C, et al. Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proceedings of the National Academy of Science USA, 2012, 109: 10101-10106.
[9]  Alassimone J, Roppolo D, Geldner N, et al. The endodermis- development and differentiation of the plant’s inner skin. Protoplasma, 2012, 249(3): 433-443.
[10]  Geldner N. The endodermis. Annual Review in Plant Biology, 2013, 64: 531-558.
[11]  Colmer T D, Gibberd M R, Wiengweera A, et al. The barrier to radial oxygen loss from roots of rice (Oryza sativa L.) is induced by growth in stagnant solutions. Journal of Experimental Botany, 1998, 49: 1431-1436.
[12]  Greenway H, Armstrong W, Colmer T D. Conditions leading to high CO2 (>5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism. Annals of Botany, 2006, 98: 9-32.
[13]  Seago Jr. J L, Marsh L C, Stevens K J, et al. A re-examination of the root cortex in wetland flowering plants with respect to aerenchyma. Annals of Botany, 2005, 96: 565-579.
[14]  Yang C D, Zhang X, Liu G F, et al. Progress on the structure and physiological functions of apoplastic barriers in root. Bulletin of Botanical Research, 2013, 33(1):114-119.
[15]  Enstone D E, Peterson C A, Ma F. Root endodermis and exodermis: structure, function, and responses to the environment. Journal of Plant Growth Regulation, 2003, 21: 335-351.
[16]  Yang C, Zhang X, Li J, et al. Anatomy and histochemistry of roots and shoots in wild rice (Zizania latifolia Griseb.). Journal of Botany, 2014, 2014, Article ID 181727.
[17]  Yang C D, Zhang X. Permeability and supplement structures of stems of Paspalum distichum. Bulletin of Botanical Research, 2013, 33(5): 564-568.
[18]  Zhang X, Yang C D, Ning G G. The developmental comparison of apoplastic barriers in Cynodon dactylon and Paspalum distichum roots. Hubei Agricultural Sciences, 2013, 52(20): 4991-4994.
[19]  Brundrett M C, Enstone D E, Peterson C A. A berberine-aniline blue fluorescent staining procedure for suberin, lignin and callose in plant tissue. Protoplasma, 1988, 146: 133-142.
[20]  Brundrett M C, Kendrick B, Peterson C A. Efficient lipid staining in plant material with Sudan red 7B or Fluorol yellow 088 in polyethylene glycol-glycerol. Biotechnic and Histochemistry, 1991, 66: 111-116.
[21]  张霞, 杨朝东, 宁国贵. 狗牙根和双穗雀稗根中质外体屏障结构发育过程的比较研究. 湖北农业科学, 2013, 52(20): 4991-4994.
[22]  杨朝东, 张霞, 刘国锋, 等. 植物根中质外体屏障结构和生理功能研究进展. 植物研究, 2013, 33(1): 114-119.
[23]  杨朝东, 张霞. 双穗雀稗(Paspalum distichum)通透性生理和茎解剖结构补充研究. 植物研究, 2013, 33(5): 564-568.
[24]  Roppolo D, De Rybel B, Tendon V D, et al. A novel protein family mediates Casparian strip formation in the endodermis. Nature, 2011, 473: 380-383.
[25]  Hose E, Clarkson D T, Steudle E, et al. The exodermis: a variable apoplastic barrier. Journal of Experimental Botany, 2001, 52: 2245-2264.
[26]  Ranathunge K, Lin J, Steudle E, et al. Stagnant deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice (Oryza sativa L.) roots. Plant Cell Environment, 2011, 34: 1223-1240.
[27]  Lux A, Luxová M, Abe J, et al. Root cortex: structural and functional variability and responses to environmental stress. Root Research, 2004, 13(3): 117-131.
[28]  Armstrong J, Jones R E, Armstrong W. Rhizome phyllosphere oxygenation in Phragmites and other species in relation to redox potential, convective gas flow, submergence and aeration pathways. New Phytologist, 2006, 172: 719-731.
[29]  参考文献:
[30]  程薪宇, 刘玫, 张欣欣, 等. 东北毛茛科植物营养器官结构及其系统学意义. 草业学报, 2014, 23(3): 62-74. 浏览
[31]  孙天航, 刘玫, 孙雪芹, 等. 东北委陵菜属植物叶形态结构的研究及其分类学价值的探讨. 草业学报, 2014, 23(3): 75-84.
[32]  张欣欣, 刘玫, 程薪宇, 等. 不同生境下陌上菜的形态解剖学比较. 草业学报, 2014, 23(2): 235-242.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133