全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

深绿木霉对白三叶草促生作用及生理生化特性的影响

DOI: 10.11686/cyxb20150218, PP. 161-167

Keywords: 深绿木霉,促生作用,白三叶草,生理生化特性

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过室内种子萌发和温室幼苗盆栽试验研究了不同稀释倍数深绿木霉发酵液对白三叶草促生作用及生理生化特性的影响。结果表明,在室内试验条件下不同稀释倍数深绿木霉发酵液能够显著提高白三叶草种子的发芽率、发芽指数和活力指数,尤其100倍稀释液对种子发芽率、发芽指数和活力指数的影响较为明显,分别为94.42%,13.42和9.52。在温室条件下不同稀释倍数深绿木霉发酵液对白三叶草幼苗的生长具有明显的影响,并能够增加幼苗叶绿素、可溶性蛋白质含量和生理生化酶的活性,其中100倍发酵液处理后幼苗的根长、株高、植株鲜重、干重和根冠比的相对增长率分别为37.09%,13.18%,57.73%,54.35%,20.89%;叶绿素和可溶性蛋白质含量的相对增长率分别为14.02%和76.21%;多酚氧化酶、过氧化物酶和苯丙氨酸解氨酶活性均显著高于对照,其中多酚氧化酶活性在处理后第3天达到最大值,过氧化物酶活性在处理后第1和4天达到最大值,苯丙氨酸解氨酶活性在处理后第3~4天达到最大值。因此,深绿木霉发酵液对白三叶草的生长具有较强的促进作用。

References

[1]  Lu Y M, Su C Q, Li H F. Effects of different salts stress on seed germination and seedling growth of Trifolium repens . Acta Prataculturae Sinica, 2013, 22(4): 123-129.
[2]  Tong Y W, Chen D F. Study on the cause and control of secondary saline soils in greenhouses. Acta Horticulturae Sinica, 1991, 18(2): 159-162.
[3]  Lu H P, Sun A H, Ma S H. Investigation on herbage disease and prevention and control of Peronospora aestivalis . Pratacultural Science, 1999, 16(6): 43-49.
[4]  Weinding R. Studies on a lethal principle effective in the parasitic action of Trichoderma lignorum on Rhizictonia solani and other soil fungi. Phytopathology, 1932, 22: 8372-8451.
[5]  Yin T, Xu B L, Liang Q L, et al . UV mutagenesis and screening for fungicide resistant strains of Trichoderma aureoviride T2. Acta Prataculturae Sinica, 2013, 22(2): 117-122.
[6]  Yang C L, Xi Y D, Liu B W, et al . Primary study on growth-promoting and biological control effects of Trichoderma harzianum T-h-30 on vegetables. Southwest China Journal of Agricultural Sciences, 2008, 21(6): 1603-1605.
[7]  Chen Z, Gu L J, Xu B L, et al . Effects of Trichoderma longibrachiatum on seed germination and physiological effects of six forage varieties. Acta Agrestia Sinica, 2013, 21(3): 564-570.
[8]  Liu J X, Wang R J, Wang X, et al . Effect of La(NO 3 ) 3 on seedling growth and physiological characteristics of ryegrass under NaCl stress. Chinese Journal of Eco-Agriculture, 2011, 19(2): 353-357.
[9]  Chen Y Q. Biochemistry Experiment Methods and Technology[M]. Beijing: Science Press, 2002: 197-199.
[10]  Yang Y F. The various methods for determining different proteins. The Sciences and Technology of Gelatin, 2007, 27(2): 98-100.
[11]  Qiu K, Si T R. Primary study on the method for determination of soluble protein in animal materials. Chinese Journal of Information on Traditional Chinese Medicine, 2007, 14(4): 49-50.
[12]  Wang Z Y, Jiang S P. Effect of endophytic fungi on defensive enzymes activity of tall fescue leaves. Journal of Anhui Agricultural Science, 2007, 35(2): 361-365.
[13]  刘连妹, 钱雯霞, 屈海泳. 哈茨木霉孢子悬浮液对番茄幼苗生长及抗氧化酶活性的影响. 江苏农业科学, 2007, (4): 96-98.
[14]  陈伯清, 屈海泳, 刘连妹. 木霉HT-03对番茄幼苗叶绿素和保护酶的影响. 江苏农业科学, 2007, (3): 112-114.
[15]  Fan J C, Liu Y X, Zhu F H. Exploitation and cultivation of Trifolium fragiferum . Special Economic Animal and Plant, 2003, 6(3): 29.
[16]  Li Z, Peng Y, Su X Y. Physiological responses of white clover by different leaf types associated with anti-oxidative enzyme protection and osmotic adjustment under drought stress. Acta Prataculturae Sinica, 2013, 22(2): 257-263.
[17]  Wu N, Wang F, Tian Z G, et al . Effects of NaCl stress on seed germination and activities of protective enzymes in purple clover variants. Journal of Northwest A&F University (Nat. Sci. Ed.), 2013, 41(2): 117-122.
[18]  Zhu J K. Plant salt tolerance. Trends Plant Science, 2001, 6(2): 66-71.
[19]  Yu R G, Du X L, Chen C, et al . Effect of PEG stress on seed germination and seeding physiology of three Legumes. Agricultural Research in the Arid Areas, 2012, 30(5): 99-103.
[20]  Al-Karaki C N. Germination, sodium, and potassium concentrations of barley seeds as influenced by salinity. Journal of Plant Nutrition, 2001, 24: 511-522.
[21]  Banu M N, Hoque M A, Watanabe-Sugimoto M, et al . Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. Journal of Plant Physiology, 2009, 166: 146-156.
[22]  Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681.
[23]  Zhang L, Kang X H, Zhou S, et al . Surveys and integrated control of fungal diseases of gramineous forage grass in Sichuan Province. Journal of Anhui Agricultural Science, 2011, 39(29): 17899-17901.
[24]  Luo L Y, Shen Z N, Ding Y S, et al . A report of study about a sclcrotial blight in Trefoll . Grassland of China, 1996, 18(1): 64-66.
[25]  Yang S Q, Ren G X, Yang G H, et al . Study on protective enzyme activity and drought resistance of 8 introduced American forage species. Agricultural Research in the Arid Areas, 2009, 27(6): 144-148.
[26]  Hu Q, Shao F F. Research advances on the growth-promoting effect of Trichoderma on plants. Journal of Anhui Agricultural Science, 2010, 38(10): 5077-5079.
[27]  Wang J F, Wu L M, Lu N H, et al . Effect of the fermentation filtrate of Trichoderma on seed vigor and seedling growth in cucumber. Shanxi Journal of Agricultural Sciences, 2008, (3): 37-38.
[28]  Wei L, Laing Z H, Luo H R. Effect of the fermentation filtrate of Trichoderma on seed vigor in rice. Seed, 2005, 24(11): 4-7.
[29]  Wu L M, Guo L J, Lu N H, et al . Effect of the metabolic product of Trichoderma on seed vigor and seedling growth of tomato. Journal of Anhui Agricultural Science, 2006, 34(21): 5482-5492.
[30]  Liu L M, Qian W X, Qu H Y. Effect of Trichoderma harzianum spore suspension on tomato seedling growth and anti-oxidant enzymes activity. Jiangsu Agricultural Sciences, 2007, (4): 96-98.
[31]  Chen B Q, Qu H Y, Liu L M. Effect of Trichoderma HT-03 on the chlorophyll and protective enzyme of tomato seedlings. Jiangsu Agricultural Sciences, 2007, (3): 112-114.
[32]  樊锦春, 刘以信, 朱凤华. 草莓三叶草的利用与栽培. 特种经济动植物, 2003, 6(3): 29.
[33]  李州, 彭燕, 苏星源. 不同叶型白三叶抗氧化保护及渗透调节生理对干旱胁迫的响应. 草业学报, 2013, 22(2): 257-263. 浏览
[34]  吴楠, 王飞, 田治国, 等. NaCl胁迫对变异紫叶三叶草种子萌发及保护酶活性的影响. 西北农林科技大学学报(自然科学版), 2013, 41(2): 117-122.
[35]  余如刚, 杜雪玲, 陈楚, 等. PEG 胁迫对三种豆科牧草种子萌发及幼苗生理影响. 干旱地区农业研究, 2012, 30(5): 99-103.
[36]  张利, 康晓慧, 周俗, 等. 四川地区禾本科牧草真菌病害调查及综合防治研究. 安徽农业科学, 2011, 39(29): 17899-17901.
[37]  罗禄怡, 沈仲宁, 丁应生, 等. 三叶草白绢病的研究. 中国草地, 1996, 18(1): 64-66.
[38]  卢艳敏, 苏长青, 李会芬. 不同盐胁迫对白三叶种子萌发及幼苗生长的影响. 草业学报, 2013, 22(4): 123-129. 浏览
[39]  童有为, 陈淡飞. 温室土壤次生盐渍化的形成和治理途径研究. 园艺学报, 1991, 18(2): 159-162.
[40]  鲁鸿佩, 孙爱华, 马绍慧. 临夏州人工草地牧草病害调查及苜蓿霜霉病防治. 草业科学, 1999, 16(6): 43-49.
[41]  尹婷, 徐秉良, 梁巧兰, 等. 耐药性木霉T 2 菌株的筛选、紫外诱变与药剂驯化. 草业学报, 2013, 22(2): 117-122. 浏览
[42]  杨春林, 席亚东, 刘波微, 等. 哈茨木霉T-h-30对几种蔬菜的促生作用及病害防治初探. 西南农业学报, 2008, 21(6): 1603-1605.
[43]  陈臻, 古丽君, 徐秉良, 等. 长枝木霉对6种牧草种子发芽与生理效应的影响. 草地学报, 2013, 21(3): 564-570.
[44]  刘建新, 王瑞娟, 王鑫, 等. La(NO 3 ) 3 对盐胁迫下黑麦草幼苗生长及抗逆生理特性的影响. 中国生态农业学报, 2011, 19(2): 353-357.
[45]  陈毓荃. 生物化学实验方法和技术[M]. 北京: 科学出版社, 2002: 197-199.
[46]  杨玉芳. 蛋白质含量测定方法. 明胶科学与技术, 2007, 27(2): 98-100.
[47]  邱葵, 司天润. 用考马斯亮蓝法测定动物药材中可溶性蛋白含量方法初探. 中国中医药杂志, 2007, 14(4): 49-50.
[48]  王志勇, 江淑平. 内生真菌对高羊茅叶内防御酶活性的影响. 安徽农业科学, 2007, 35(2): 361-365.
[49]  杨顺强, 任广鑫, 杨改河, 等. 8种美国引进禾本科牧草保护酶活性与抗旱性研究. 干旱地区农业研究, 2009, 27(6): 144-148.
[50]  胡琼, 邵菲菲. 木霉对植物促生作用的研究进展. 安徽农业科学, 2010, 38(10): 5077-5079.
[51]  王建锋, 吴利民, 陆宁海, 等. 木霉发酵产物对黄瓜种子活力及幼苗生长的影响. 陕西农业科学, 2008, (3): 37-38.
[52]  魏林, 梁志怀, 罗赫荣. 哈茨木霉 T2-16发酵产物对水稻种子活力的影响. 种子, 2005, 24(11): 4-7.
[53]  吴利民, 郭立季, 陆宁海, 等. 木霉对番茄种子活力及幼苗生长的影响. 安徽农业科学, 2006, 34(21): 5482-5492.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133