全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2015 

种植模式对土壤酶活性和真菌群落的影响

DOI: 10.11686/cyxb20150210, PP. 77-84

Keywords: 轮作,连作,土壤酶,真菌

Full-Text   Cite this paper   Add to My Lib

Abstract:

试验选择黔北具有代表性的灰岩黄壤,在实施秸秆还田的基础上,设置烤烟-小麦(T-W)和烤烟-油菜(T-C)连作,以及烤烟-小麦-玉米(T-W-M)和烤烟-油菜-玉米(T-C-M)轮作处理。利用常规分析和454-高通量测序,连续种植10年后研究了不同种植模式对土壤酶和真菌的影响。结果表明,轮作使土壤有机质比起始时增加11.23%~16.06%,微生物量碳、微生物量氮含量提高,土壤脱氢酶活性增强,有益于保持土壤肥力和生产力。轮作显著提高真菌的18SrDNA序列数、种类(OTUs)和多样性指数,优势度指数和前20种优势菌株的丰富度之和降低,说明轮作改善了土壤生态环境,使之适合多种真菌的繁殖生长,种群数量增加。多种真菌共同存在,互相制约,可防止病原真菌过度繁殖,抑制病害的发生。而在连作土壤中,真菌种群数相对减少,优势种群突出,导致作物真菌病害的发生几率增加。此外,在土壤真菌中,子囊菌超过75%。实施不同种植模式10年之后,前20种优势菌株中仍有8株共同存在于各处理的土壤中;在T-C处理的土壤中,这些优势真菌均可在其他3种种植模式之一的土壤中出现。说明土壤环境与真菌种群结构密切相关,但又因作物种植而变化。

References

[1]  Meng J, Wu D B, Yao Y, et al . Research progress of the effect on continuous cropping of greenhouse soil quality and crop growth. Heilongjiang Agricultural Sciences, 2013, 9: 131-134.
[2]  Zhang B Y, Chen T L, Wang B. Effects of long-term uses of chemical fertilizers on soil quality. Chinese Agricultural Science Bulletin, 2010, 26(11): 182-187.
[3]  Zou L Y. Study on autotoxicity in continuous cropping obstacle of watermelon plant[D]. Zhejiang: Zhejiang University, 2004.
[4]  Wang S Q, Han X Z, Qiao Y F, et al . Variation of soil enzymes activity and relevant nutrients at different years of soybean ( Glycinemax L.) rotation, alternate and continuous cropping. Soybean Science, 2009, 28(4): 611-615.
[5]  Li R Q, Liu X, Qiu H Z, et al . Changes in the dominant pathogens causing Fusarium dry rot of potato in rhizosphere soil under continuous potato cropping systems based on real-time quantitative PCR. Acta Prataculturae Sinica, 2013, 22(6): 239-248.
[6]  Xing H Q, Xiao Z W, Yan J Z, et al . Effects of continuous cropping of maize on soil microbes and main soil nutrients. Pratacultural Science, 2011, 28(10): 1777-1780.
[7]  Zhang W, Long X Q, Huo X D, et al . 16S rRNA-Based PCR-DGGE analysis of actinomycete communities in fields with continuous cotton cropping in Xinjiang, China. Soil Microbiology, 2013, 66: 385-393.
[8]  Zou Y K, Zhang J N, Yang D L, et al . Phospholipid fatty acid analysis of microbial community structure under different land use patterns in soil ecosystems of Leymus chinensis steppes. Acta Prataculturae Sinica, 2011, 20(4): 27-33.
[9]  Jin Y, Yang Y H, Duan Y Q, et al . Effect of rotational cropping and continuous cropping on yield and quality of flue-cured tobacco. Southwest China Journal of Agricultural Sciences, 2004, 17: 267-271.
[10]  Ma N N, Li T L. Effect of long-term continuous cropping of protected tomato on soil microbial community structure and diversity. Acta Horticulturae Sinica, 2013, 40(2): 255-264.
[11]  Yuan L G, Zhang J L, Zhang Z Y, et al . A preliminary study on the effect of capsicum continuous cropping on rhizosphere soil microflora. Shaanxi Agricultural Sciences, 2006, 2: 49-50.
[12]  Cao L, Qin S H, Zhang J L, et al . Effect of leguminous forage rotations on soil microbe consortiums and enzyme activity in continuously cropped potato fields. Acta Prataculturae Sinica, 2013, 22(3): 139-145.
[13]  Pietro F, Roberto C, Chiara F, et al . The rotation of white lupin ( Lupinus albus L.) with metal-accumulating plant crops: A strategy to increase the benefits of soil phytoremediation. Journal of Environmental Management, 2014, 135: 35-42.
[14]  Kennedy A C, Smith K L. Soil microbial diversity and the sustainability of agricultural soils. Plant and Soil, 1995, 170: 75-86.
[15]  Li W Y, Peng Z P, Xu P Z, et al . Relationship between vegetable crops rhizosphere microbes and plant soil-borne diseases[C]. Guangdong: Soil and Fertilizer Research Institute, Guangdong Academy of Agricultural Sciences, 2011.
[16]  Yang J H. Soil Agrochemical Analysis and Environmental Monitoring[M]. Beijing: Chinese Press, 2008: 26-75.
[17]  Guan S Y. Soil Enzyme and Its Research Method[M]. Beijng: Agriculture Press, 1986: 274-339.
[18]  He Z L. Method for determination of soil microbial biomass: present and future. Progress in Soil Science, 1994, 22(4): 36-44.
[19]  Xu G D. GS FLX, the leader in next generation sequencer. Institute of Microbiology, 2008, 35(1): 149-151.
[20]  Krebs C J. Ecological Methodology[M]. New York: Harper Collins Publication, 1989: 654.
[21]  Roesch L F W, Fulthorpe R R, Riva A, et al . Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME Journal, 2007, 1(4): 283-290.
[22]  Lim Y M, Kim B K, Kim C, et al . Assessment of soil fungal communities using pyrosequencing. Journal of Microbiology, 2010, 48(3): 284-289.
[23]  杨剑虹. 土壤农化分析与环境监测[M]. 北京: 中国大地出版社, 2008: 26-75.
[24]  关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986: 274-339.
[25]  何振立. 土壤微生物量的测定方法: 现状和展望. 土壤学进展, 1994, 22(4): 36-44.
[26]  许冠东. Genome Sequencer FLX引领快速基因组测序时代的到来. 微生物学通报, 2008, 35(1): 149-151.
[27]  徐国伟, 李帅, 赵永芳, 等. 秸秆还田与施氮对水稻根系分泌物及氮素利用的研究. 草业学报, 2014, 23(2): 140-146. 浏览
[28]  杨文亭, 冯远娇, 王建武. 不同耕作措施对土壤微生物的影响. 土壤通报, 2011, 42(1): 214-219.
[29]  袁亮. 设施栽培土壤微生物量和酶活性的变化规律及其与土壤肥力的关系[D]. 泰安: 山东农业大学, 2007.
[30]  单贵莲, 初晓辉, 罗富成, 等. 围封年限对典型草原土壤微生物及酶活性的影响. 草原与草坪, 2012, 32(1): 1-6.
[31]  徐严. 若尔盖高原湿地土壤真菌的初步研究[D]. 雅安: 四川农业大学, 2008.
[32]  康振生. 我国植物真菌病害的研究现状及发展策略. 植物保护, 2010, 36(3): 9-12.
[33]  高东, 何霞红. 生物多样性与生态系统稳定性研究进展. 生态学杂志, 2010, 29(12): 2507-2513.
[34]  Xu G W, Li S, Zhao Y F, et al . Effects of straw returning and nitrogen fertilizer application on root secretion and nitrogen utilization of rice. Acta Prataculturae Sinica, 2014, 23(2): 140-146.
[35]  Yang W T, Feng Y J, Wang J W. Effect of different tillage measure on soil microorganism. Chinese Journal of Soil Science, 2011, 42(1): 214-219.
[36]  Yuan L. The changes of soil microbial biomass and enzyme activities and their relations with soil fertility in sheltered planting[D]. Taian: Shandong Agricultural University, 2007.
[37]  Shan G L, Chu X H, Luo F C, et al . Influence of exclosure period on soil microorganism and its enzyme activity in typical steppe. Grassland and Turf, 2012, 32(1): 1-6.
[38]  Xu Y. Preliminary study on the soil fungi in the Zojge plateau wetland[D]. Ya’an: Sichuan Agricultural University, 2008.
[39]  Kang Z S. Current status and development strategy for research on plant fungal disease in china. Plant Protection, 2010, 36(3): 9-12.
[40]  Hunter P R, Gaston M A. Numerical index of the discriminatory ability of typing systems-An application of Simpsons index of diversity. Journal of Clinical Microbiology, 1988, 26(11): 2465-2466.
[41]  Gao D, He X H. Research advances on biodiversity and ecosystem stability. Chinese Journal of Ecobgy, 2010, 29(12): 2507-2513.
[42]  蒙静, 武东波, 姚英, 等. 连作对土壤质量和植株生长影响的研究现状. 黑龙江农业科学, 2013, 9: 131-134.
[43]  张北赢, 陈天林, 王兵. 长期施用化肥对土壤质量的影响. 中国农学通报, 2010, 26(11): 182-187.
[44]  邹丽云. 西瓜连作障碍中自毒作用的研究[D]. 杭州: 浙江大学, 2004.
[45]  王树起, 韩晓增, 乔云发, 等. 寒地黑土大豆轮作与连作不同年限土壤酶活性及相关肥力因子的变化. 大豆科学, 2009, 28(4): 611-615.
[46]  李瑞琴, 刘星, 邱慧珍, 等. 连作马铃薯根际干腐病优势病原菌荧光定量PCR快速检测记在根际的动态变化. 草业学报, 2013, 22(6): 239-248. 浏览
[47]  邢会琴, 肖占文, 闫吉智, 等. 玉米连作对土壤微生物和土壤主要养分的影响. 草业科学, 2011, 28(10): 1777-1780.
[48]  邹雨坤, 张静妮, 杨殿林, 等. 不同利用方式下羊草草原土壤生态系统微生物群落结构PLFA分析. 草业学报, 2011, 20(4): 27-33. 浏览
[49]  晋艳, 杨宇虹, 段玉琪, 等. 烤烟轮作、连作对烟叶产量质量的影响. 西南农业学报, 2004, 17: 267-271.
[50]  马宁宁, 李天来. 设施番茄长期连作土壤微生物群落结构及多样性分析. 园艺学报, 2013, 40(2): 255-264.
[51]  袁龙刚, 张军林, 张朝阳, 等. 连作对辣椒根际土壤微生物区系影响的初步研究. 陕西农业科学, 2006, 2: 49-50.
[52]  曹莉, 秦舒浩, 张俊莲, 等. 轮作豆科牧草对连作马铃薯田土壤微生物菌群及酶活性的影响. 草业学报, 2013, 22(3): 139-145. 浏览
[53]  李文英, 彭智平, 徐培智, 等. 中国菌物学会第五届会员代表大会暨2011年学术年会论文摘要集[C]. 广州: 广东省农业科学院土壤肥料研究所, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133