全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2010 

Na+对渗透胁迫下霸王幼苗光合特性的影响

, PP. 198-203

Keywords: Na+,渗透胁迫,霸王幼苗,光合特性

Full-Text   Cite this paper   Add to My Lib

Abstract:

在-0.5MPa渗透胁迫下,研究了Na+对多浆旱生植物霸王幼苗光合特性的影响。结果显示,在渗透胁迫下,50mmol/LNaCl的加入使霸王幼苗的叶面积和叶绿素(a+b)含量分别显著增加了105%和33%,净光合速率(Pn)、气孔导度(Gs)以及磷酸烯醇式丙酮酸羧化酶(PEPCase)活性分别显著提高了115%,90%和180%,而胞间CO2浓度(Ci)显著降低了17%;同时,使PSⅡ的潜在活性(Fv/F0)、原初光能转换效率(Fv/Fm)以及光合电子传递速率(ETR)分别显著提高了15%,5%和11%。以上结果表明,Na+能改善渗透胁迫下霸王幼苗的光合作用,从而提高植株的抗胁迫能力。

References

[1]  Zhu X Y, Chen G C, Zhang C L. Photosynthetic electron transport, photophosphorylation and antioxidants in two ecotypes of reed (Phragmtes communis Trin.) from different habitats[J]. Photosynthetica, 2001, 39: 183-189.
[2]  李三相, 周向睿, 王锁民. Na+在植物中的有益作用[J]. 中国沙漠, 2008, 28(3): 485-490.
[3]  Murata S, Sekiya J. Effects of sodium on photosynthesis in Panicum coloratum[J]. Plant Cell Physiology, 1992, 33: 1239-1242.
[4]  Ohnishi J, Flugge U, Heldt H W, et al. Involvement of Na+ in active uptake of pyruvate in mesophyll chloroplasts of some C4 plant[J]. Plant Physiology, 1990, 94: 950-959.
[5]  赵一之, 朱宗元. 亚洲中部荒漠区的植物特有属[J]. 云南植物研究, 2003, 25(2): 113-121.
[6]  杨鑫光, 傅华, 牛得草. 干旱胁迫下幼苗期霸王的生理响应[J]. 草业学报, 2007, 16(5): 107-112.
[7]  Wang S M, Wan C G, Wang Y R. The characteristics of Na+, K+ and free proline distribution in several drought resistant plants of the Alxa Desert, China[J]. Journal of Arid Environments, 2004, 56: 525-539.
[8]  李三相. Na+与多浆旱生植物霸王抗旱性研究[D]. 兰州: 兰州大学, 2006.
[9]  Martinez J P, Kinet J M, Bajji M, et al. NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L[J]. Journal of Experimental Botany, 2005, 56: 2421-2431.
[10]  Debez A, Saadaoui D, Ramani B, et al. Leaf H+-ATPase activity and photosynthetic capacity of Cakile maritime under increasing salinity[J]. Environmental and Experimental Botany, 2006, 57: 285-295.
[11]  Slama I, Ghnaya T, Messedi D, et al. Effect of sodium chloride on the response of the halophyte species Sesuvium portulacastrum grown in mannitol-inducedwater stress[J]. Journal of Plant Research, 2007, 120: 291-299.
[12]  沈伟其. 测定水稻叶片叶绿素含量的混合液提取法[J]. 植物生理学通讯, 1988, 3: 62-64.
[13]  李卫华, 张承烈. 泡泡刺叶磷酸烯醇式丙酮酸羧化酶季节性聚态变化[J]. 植物生态学报, 2000, 24(3): 284-288.
[14]  Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochemica et Biophysica Acta, 1989, 990: 87-92.
[15]  张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报, 1999, 16(4): 444-448.
[16]  赵博生, 衣艳君, 刘家尧. 外源甜菜碱对干旱/盐胁迫下的小麦幼苗生长和光合功能的改善[J]. 植物学通报, 2001, 18(3): 378-380.
[17]  Powle S B. Photo inhibition of photosynthesis induced by visible light[J]. Annual Review of Plant Physiology, 1984, 35: 15-44.
[18]  Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33: 317-345.
[19]  陈建明, 俞晓平, 程家安. 叶绿素荧光动力学及其在植物抗逆生理研究中的应用[J]. 浙江农业学报, 2006, 18(1): 51-55.
[20]  Lu C M, Qiu N W, Wang B S, et al. Salinity treatment shows no effects on photosystem II photochemistry, but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa[J]. Journal of Experimental Botany, 2003, 54: 851-860.
[21]  Cheeseman J M. Mechanism of salinity tolerance in plants[J]. Plant Physiology, 1988, 87: 547-550.
[22]  Brownell P F, Bielig L M. The role of sodium in the conversion of pyruvate to phosphoenolpyruvate in mesophyll chloroplasts of C4 plants[J]. Australian Journal of Plant Physiology, 1996, 23: 171-177.
[23]  吴雪霞, 朱为民, 朱月林, 等. 外源一氧化氮对NaCl胁迫下番茄幼苗光合特性的影响[J]. 植物营养与肥料学报, 2007, 13(6): 1105-1109.
[24]  李卫华, 郝乃斌, 戈巧英, 等. C3植物中C4途径的研究进展[J]. 植物学通报, 1999, 16(2): 97-106.
[25]  Ting I P, Osmond C B. Photosynthetic photosynthetic phosphoenolpyruvate carboxylase characteristics of alloenzymes from leaves of C3 and C4 plants[J]. Plant Physiology, 1973, 51: 439-447.
[26]  Stitt M. Nitrate regulation of metabolism and growth[J]. Current Opinion in Plant Biology, 1999, 2: 178-186.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133