全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2010 

青藏高原老芒麦种质基于SRAP标记的遗传多样性研究

, PP. 173-183

Keywords: 老芒麦,青藏高原,SRAP,遗传多样性,聚类分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用SRAP分子标记技术,对采自青藏高原的52份老芒麦材料进行遗传多样性分析,结果表明,1)用16对随机引物组合共扩增出318条清晰可辨的条带,其中多态性条带275条,占86.48%,材料间的遗传相似系数(GS)范围为0.5064~0.9586,平均值为0.7921,物种水平上的Nei氏遗传多样性为0.2270,这些结果说明供试老芒麦具有较为丰富的遗传多样性;2)对所有材料的聚类分析发现,在GS=0.80的水平上,供试材料可聚为5类,大部分来自相同或相似生态地理环境的材料聚为一类,表明供试材料的聚类和其生态地理环境间有一定的相关性;3)对5个老芒麦地理类群基于Shannon-Weaver指数的遗传分化估算发现,类群内遗传变异占总变异的65.29%;而类群间遗传变异占总变异的34.71%;4)对各生态地理类群基于Nei氏无偏估计的遗传一致度聚类分析表明,各生态地理类群间的遗传分化与其所处的生态地理环境具有一定的相关性。

References

[1]  陈默君, 贾慎修. 中国饲用植物[M]. 北京: 中国农业出版社, 2002.
[2]  Dewey D R. Cytogentics of Elymus sibiricus and its hybrids with Agropyron tauri, Elymus canadensis, and Agropyron caninum[J]. Botanical Gazette, 1974, 135(1): 80-87.
[3]  鄢家俊, 白史且, 马啸, 等. 老芒麦遗传多样性及育种研究进展[J]. 植物学通报, 2007, 24(2): 226-231.
[4]  杨瑞武, 周永红, 郑有良. 披碱草属、鹅观草树和猬草属模式种的形态学变异和酯酶同工酶分析[J]. 四川农业大学学报, 2000, 18(4): 291-295.
[5]  袁庆华, 张吉宇, 张文淑, 等. 披碱草和老芒麦野生居群生物多样性研究[J]. 草业学报, 2003, 12(5): 44-49.
[6]  鄢家俊, 白史且, 马啸, 等. 川西北高原野生老芒麦居群穗部形态多样性研究[J]. 草业学报, 2007, 16(6): 99-106.
[7]  Ma X, Zhang X Q, Zhou Y H, et al. Assessing genetic diversity of Elymus sibiricus (Poaceae: Triticeae) populations from Qinghai-Tibet Plateau by ISSR markers[J]. Biochemical Systematics and Ecology, 2008, 36(3): 514-522.
[8]  Melchinger A E, Lee M, Lamkey K R, et al. Genetic diversity for restriction fragment length polymorphism: Relation to estimated genetic effect in maize inbreds[J]. Crop Science, 1990, 30(1): 1033-1040.
[9]  Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica[J]. Theoretical and Applied Genetics, 2001, 103(3): 455-461.
[10]  Lin Z X, Zhang X L, Nie Y C, et al. Construction of a genetic linkage map for cotton based on SRAP[J]. Chinese Science Bulletin, 2003, 48(19): 2063-2067.
[11]  Li G, Gao M, Yang B, et al. Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping[J]. Theoretical and Applied Genetics, 2003, 107(1): 168-180.
[12]  易杨杰, 张新全, 黄琳凯, 等. 野生狗牙根种质遗传多样性的SRAP研究[J]. 遗传, 2008, 30(1): 94-100.
[13]  杨平, 刘仙俊, 刘新春, 等. 利用SRAP 标记研究四川高原青稞育成品种的遗传多样性[J]. 遗传, 2008, 30(1): 115-122.
[14]  陈碧云, 伍晓明, 陆光远, 等. 甘蓝型油菜花瓣缺失基因的图谱定位[J]. 遗传, 2006, 28(6): 707-712.
[15]  王刚, 潘俊松, 李效尊, 等. 黄瓜SRAP遗传连锁图的构建及侧枝基因定位[J]. 中国科学C辑(生命科学版), 2004, 34(6): 510-516.
[16]  Riaz A, LI G, Quresh Z. Genetic diversity of oilseed Brassica napus inbred lines based on sequence related amplified polymorphism and its relation to hybrid performance[J]. Plant Breeding, 2001, 120(5): 411-415.
[17]  严学兵, 郭玉霞, 周禾, 等. 青藏高原垂穗披碱草遗传变异的地理因素分析[J]. 西北植物学报, 2007, 27(2): 328-333.
[18]  Doyle J J. DNA protocols for plants-CTAB total DNA isolation[A]. In: Hewitt G M, Johnston A. Molecular Techniques in Taxonomy[M]. Berlin, Germany: Springer-Verlag Press, 1991: 283-293.
[19]  Ferriol M, Pico B, Nuez F. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers[J]. Theoretical and Applied Genetics, 2003, 107(1): 271-282.
[20]  Budak H, Shearman R C, Parmaksiz I, et al. Molecular characterization of Buffalograss germplasm using sequence-related amplified polymorphism markers[J]. Theoretical and Applied Genetics, 2004, 108(2): 328-334.
[21]  Riaz A, Potter D, Stephen M. Genotyping of peach and nectarine cultivars with SSR and SRAP molecular markers[J].Journal of the American Society for Horticultural Science, 2004, 129(3): 204-211.
[22]  许绍斌, 陶玉, 杨昭庆, 等.简单快速的DNA银染和胶保存方法[J]. 遗传, 2002, 24(3): 335-336.
[23]  Wachira F N, Waugh R, Hackett C A, et al. Detection of genetic diversity in tea (Camellia sinensis) using RAPD markers[J]. Genome, 1995, 38(1): 201-210.
[24]  Persson K, Diaz O, von Bothmer R. Extent and patterns of RAPD variation in landraces and cultivars of rye (Secale cereale L.) from Northern Europe[J]. Hereditas, 2001, 134(5): 237-243.
[25]  Nei M. Analysis of gene diversity in subdivided groups[J]. Proceedings of the National Academy of Sciences of the United States of America, 1973, 70(1): 3321-3323.
[26]  Yeh F C, Boyle T J B. Popgene version 1.31. Microsoft Window-based Freeware for Population Analysis[M]. Edmonton, AB: University of Alberta and Centre for International Forestry Research, 1999.
[27]  Rohlf F J. NTSYS-pc Numerical Taxonomy and Multivariate Analysis System(Version 2.1)[M]. New York: User Guide. Exeter Software. Setauket, 2000.
[28]  Nei M, Li W. Mathematical model for study the genetic variation in terms of restriction endonucleases[J]. Proceedings of the National Academy of Sciences of the United States of America, 1979, 74(1): 5267-5273.
[29]  赵汝植. 西南区自然区划探讨[J]. 西南师范大学学报(自然科学版), 1997, 22(2): 193-198.
[30]  Budak H, Shearman R C, Parmaksiz I, et al. Molecular characterization of buffalograss germplasm using sequence-related amplified polymorphism markers[J]. Theoretical and Applied Genetics, 2004, 108: 328-334.
[31]  Zeng B, Zhang X Q, Lan Y, et al. Evaluation of genetic diversity and relationships in orchardgrass (Dactylis glomerata L.) germplasm based on SRAP markers[J]. Canadian Journal of Plant Science, 2008, 88: 53-60.
[32]  Gaudett M, Salomon B, Sun G L. Molecular variation and population structure in Elymus trachycaulus and comparison with its morphologically similar E. alaskanus[J]. Plant Systematics and Evolution, 2005, 250(1): 81-91.
[33]  Zhang X Q, Salomom B, von Bothmer R. Application of random amplified polymorphic DNA markers to evaluate intraspecific genetic variation in the Elymus alaskanus complex (Poaceae)[J]. Genetic Resources and Crop Evolution, 2002, 49: 397-407.
[34]  Nybom H, Bartish I V. Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants[J]. Perspectives in Plant Ecology Evolution and Systematics, 2000, 15(3): 93-114.
[35]  Hamrick J L, Godt M J W. Conservation genetics of endemic plant species[A]. In: Avise J C, Hamrick J L. Conservation Genetics, Case Histories from Nature[M]. New York: Chapman and Hall, 1996: 281-304.
[36]  Díaz O, Sun G L, Salomon B, et al. Levels and distribution of allozyme and RAPD variation in populations of Elymus fibrosis (Schrenk) Tzvel. (Poaceae)[J]. Genetic Resources and Crop Evolution, 2000, 47: 11-24.
[37]  Godt M J W, Johnson B R, Hamrick J L. Genetic diversity and population size in four rare southern Appalachian plant species[J]. Conservation Biology, 1996, 10(2): 796-805.
[38]  Sun M. Effects of population size, mating system, and evolutionary origin on genetic diversity in Spiranthes sinensis and S. hongkongensis[J]. Conservation Biology, 1996, 10(2): 785-795.
[39]  Hamrick J L, Godt M J W. Allozyme diversity in plant species[A]. In: Brown A H D, Clegg M T, Kahler A L, et al. Plant Population Genetics, Breeding and Genetic Resources[M]. Sunderland MA: Sinauer Associates Press, 1989: 43-63.
[40]  严学兵, 郭玉霞, 周禾, 等. 影响披碱草属植物遗传分化和亲缘关系的地理因素分析[J]. 植物资源与环境学报, 2006, 15(4): 17-24.
[41]  肖苏, 张新全, 马啸, 等. 野生鹅观草种质的醇溶蛋白遗传多样性分析[J]. 草业学报, 2008, 17(5): 138-144. 浏览
[42]  Nevo E, Apelbaum-Elkaher I, Garty J. Natural selection causes microscale allozyme diversity in wild barley and a lichen at ‘Evolution Canyon’, Mt. Cannel, Israel[J]. Heredity, 1997, 78: 373-382.
[43]  Bockelmarm A C, Reusch T B H, Bijsma R. Habitat differentiation vs. isolation-by-distance: The genetic population structure of Elymus athericus in European salt marshes[J]. Molecular Ecology, 2003, 12: 505-515.
[44]  严学兵, 王堃, 周禾, 等. 不同来源SSR标记在我国披碱草属植物的通用性和效率评价[J]. 草业学报, 2008, 17(6): 112-120. 浏览
[45]  刘欢, 慕平, 赵桂琴. 基于AFLP的燕麦遗传多样性研究[J]. 草业学报, 2008, 17(6): 121-128. 浏览
[46]  崔国文. 中国牧草育种工作的发展、现状与任务[J]. 草业科学, 2008, (1): 38-43.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133