全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2010 

信号分子H2O2调节抗氧化系统提高高羊茅耐热性研究

, PP. 89-94

Keywords: H2O2,高温胁迫,冷季型草坪草,信号分子,抗氧化系统,AsA-GSH循环

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用盆栽试验,利用10mmol/L的H2O2对冷季型草坪草高羊茅进行叶面喷施处理,研究外源低浓度H2O2对高羊茅叶片中抗氧化系统的调控作用及其对高羊茅抗热性的影响。结果表明,H2O2可能作为信号分子预先增加抗氧化酶的活性,改变抗氧化剂的浓度,从而减轻随后发生的热胁迫对草坪草造成的氧化伤害;在胁迫过程中POD和CAT活性在H2O2预处理后增加不显著,热胁迫本身增加了POD的活性,但是降低了CAT活性,POD对于提高高羊茅的耐热性可能具有更重要的作用;外源H2O2显著影响了高羊茅叶片中的AsA-GSH循环,其中处理植株中的APX、GPX和GR的活性在热胁迫过程中增加20%~110%,GSH/GSSG下降了80%,与高羊茅抗热性的提高密切相关。可见信号分子H2O2可以通过调控高羊茅的抗氧化系统提高其抗热性。

References

[1]  Larkindale J, Huang B R. Thermotolerance and antioxidant systems in Agrostis stolonifera: Involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide, and ethylene[J]. Journal of Plant Physiology, 2004, 161: 405-413.
[2]  苏桐, 龙瑞军, 魏小红, 等. 外源NO对NaCl胁迫下燕麦幼苗氧化损伤的保护作用[J]. 草业学报, 2008, 17(5): 48-53. 浏览
[3]  曲涛, 南志标. 作物和牧草对干旱胁迫的响应及机理研究进展[J]. 草业学报, 2008, 17(2): 126-135.
[4]  Huang S H, Yu C W, Lin C H. Hydrogen peroxide functions as a stress signal in plants[J]. Botanical Bulletin of Academia Sinica, 2005, 46(1): 1-10.
[5]  Andre-Dias de A N, Jose-Tarquinio P, Joaquim E F, et al. Hydrogen peroxide pre-treatment induces saltstress acclimation in maize plants[J]. Journal of Plant Physiology, 2005, 162: 1114-1122.
[6]  Wahid A, Perveen M, Gelani S, et al. Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins[J]. Journal of Plant Physiology, 2007, 164(3): 283-294.
[7]  冉飞, 包苏科, 石丽娜, 等. 干旱胁迫和复水对锡金微孔草抗氧化酶系统的影响[J]. 草业学报, 2008, 17(5): 156-160. 浏览
[8]  Dagmar P, Sairam R K, Srivastava G C, et al. Oxidative stress and antioxidant activity as the basis of senescence in maize leaves[J]. Plant Science, 2001, 161: 765-771.
[9]  李忠光, 杜朝昆, 龚明. 在单一提取系统中同时测定植物AsA/DHA和GSH/GSSG[J]. 云南师范大学学报, 2003, 23(3): 67-70.
[10]  Smith I K, Vierheller T L, Thorne C A. Assay of glutathione reductase in crude homogenates use 5, 5′-dithiol-bis(2-nitrobenzoic acid)[J]. Analytical Biochemistry, 1988, 175: 408-413.
[11]  Cheng Y L, Song C P. Hydrogen peroxide homeostasis and signaling in plant cells[J]. Science China Series C-Life Sciences, 2006, 49(1): 1-11.
[12]  Horváth E, Pál M, Szalai G, et al. Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants[J]. Biologia Plantarum, 2007, 51: 480-487.
[13]  Bradley D J, Kjellbon P, Lamb C J. Elicitor- and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: A novel, rapid defense response[J]. Cell, 1992, 70(1): 21-30.
[14]  Anderson M D, Prasad T K, Stewart C R. Changes in isozyme profiles of catalase peroxidase and glutathione reductase during acclimation to chilling in mesocotyls of maize seedling[J]. Plant Physiology, 1995, 109: 1247-1257.
[15]  Elbieta K, Maria S.Ascorbate, glutathione and related enzymes in chloroplasts of tomato leaves infected by Botrytis cinerea[J]. Plant Science, 2001, 160: 723-731.
[16]  Kocsy G, Galiba G, Brunold C. Role of glutathione in adaptation and signalling during chilling and cold acclimation in plants[J]. Physiologia Plantarum, 2001, 113: 58-164.
[17]  Milla M A R, Maurer A, Huete A R, et al. Glutathione peroxidase genes in Arabidposis are ubiquityous and regulated by abiotic stresses though diverse signaling pathways[J]. The Plant Journal, 2003, 36: 602-615.
[18]  Edwards R, Dixon D P, Walbot V. Plant glutathione S-transferases enzymes with multiple functions in sickness and in health[J]. Trends in Plant Science, 2000, 5: 193-198.
[19]  李建龙, 晏笳, 蒋平, 等. 亚热带主要草坪草抗性生理研究进展[J]. 中国草地, 2002, 24(4): 41-46.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133