全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2011 

黄河口滨岸潮滩湿地CO2、CH4和N2O通量特征初步研究

, PP. 51-61

Keywords: CO2,CH4,N2O,潮滩,黄河口

Full-Text   Cite this paper   Add to My Lib

Abstract:

2009年8月,运用静态暗箱-气相色谱法对夏季黄河口滨岸潮滩湿地CO2、CH4和N2O通量的日变化特征进行了原位观测。结果表明,夏季低潮滩沉积物-大气界面的CO2、CH4和N2O通量均具有明显日变化特征,日通量范围分别为-18.755~43.731,-0.070~0.224和-0.002~0.008mg/(m2·h),均值为11.630,0.079和0.005mg/(m2·h),全天表现为三者的排放“源”;中潮滩沉积物-大气界面CO2、CH4和N2O通量的日变化范围分别为-30.780~25.734,-0.111~0.100和-0.004~0.006mg/(m2·h),均值为4.570,0.011和0.002mg/(m2·h),全天亦表现为三者的排放“源”;中潮滩-大气界面CO2、CH4和N2O通量的日变化范围分别为46.253~102.637,-0.211~0.048和-0.008~0.008mg/(m2·h),均值为76.656,-0.038和-0.002mg/(m2·h),全天表现为CO2的“源”、CH4和N2O的“汇”。本研究还发现,中潮滩的CO2通量与气温呈显著正相关(P<0.05)关系,低潮滩沉积物的CH4通量与气温、地表温度和5cm地温呈极显著正相关(P<0.01)关系,而中潮滩的N2O通量与气温、地表温度和不同深度地温(5,10,20cm)呈显著(P<0.05)或极显著(P<0.01)负相关关系;沉积物基质和翅碱蓬群落是影响CO2、CH4和N2O通量特征的重要因素,而水分、盐分对于三者通量特征的影响也不容忽视。

References

[1]  Wang C T, Cao G M, Wang Q L, et al. Changes in plant biomass and species composition of alpine kobresia meadows along altitudinal gradient on the Qinghai-Tibetan Plateau. Science in China Series C: Life Science, 2007, 37(5): 582-592.
[2]  杨莹博, 辛小娟, 艾得协措, 等. 鼢鼠土丘植被恢复演替过程中的物种多样性变化. 草业学报, 2010, 19(1): 14-20. 浏览
[3]  左小安, 赵学勇, 赵哈林, 等. 科尔沁沙质草地群落物种多样性、生产力与土壤特性的关系. 环境科学, 2007, 28(5): 945-951.
[4]  IPCC. Changes in atmospheric constituents and in radioactive forcing. Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2007.
[5]  左小安, 赵哈林, 赵学勇, 等. 科尔沁沙地不同恢复年限退化植被的物种多样性. 草业学报, 2009, 18(4): 9-16. 浏览
[6]  Rodhe H. A comparison of the contribution of various gases to the greenhouse effect. Science, 1990, 248: 1217-1219.
[7]  Liu X D, Chen B D. Climatic warming in the Tibetan Plateau during recent decades. International Journal of Climatology, 2000, 20(14): 1729-1742. 3.0.CO;2-Y target="_blank">
[8]  吴绍洪, 尹云鹤, 郑度, 等. 青藏高原近30年气候变化趋势. 地理学报, 2005, 60(1): 3-11.
[9]  Blake D R, Rowland F S. Continuing worldwide increase in tropospheric methane, 1978 to 1987. Science, 1988, 239: 1129-1131.
[10]  Wang G X, Li Y S, Wu Q B, et al. Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau. Science in China Series D: Earth Sciences, 2006, 36(8): 743-754.
[11]  郭正刚, 牛富俊, 湛虎, 等. 青藏高原北部多年冻土退化过程中生态系统的变化特征. 生态学报, 2007, 27(8): 3294-3301.
[12]  陈生云, 赵林, 秦大河, 等. 青藏高原多年冻土区高寒草地生物量与环境因子关系的初步分析. 冰川冻土, 2010, 32(2): 405-413.
[13]  杨针娘. 祁连山冰川水资源. 冰川冻土, 1988, 10(1): 36-46.
[14]  慕富强. 最近25年来疏勒河流域气候变化与水文水资源的响应. 兰州: 兰州大学, 2006.
[15]  丁宏伟, 魏余广, 李爱军, 等. 疏勒河出山径流量变化特征及趋势分析. 干旱区研究, 2001, 18(3): 48-52.
[16]  盛煜, 李静, 吴吉春, 等. 基于GIS的疏勒河流域上游多年冻土分布特征. 中国矿业大学学报, 2010, 39(1): 32-39.
[17]  周幼吾, 邱国庆, 郭东信, 等. 中国冻土. 北京: 科学出版社, 2000.
[18]  吴吉春, 盛煜, 李静, 等. 疏勒河源区的多年冻土. 地理学报, 2009, 64(5): 571-580.
[19]  Prinn R G, Cunnold D M, Rasmussen R. Atmospheric emissions and trends of nitrous oxide deduced from ten years of ALE-GAGE data. Journal of Geophysical Research, 1990, 95: 18369-18385.
[20]  高国刚, 胡玉昆, 李凯辉, 等. 高寒草地群落物种多样性与土壤环境因子的关系. 水土保持学报, 2009, 29(3): 118-122.
[21]  马克平, 黄建辉, 于顺利, 等. 北京东灵山地区植物群落多样性的研究Ⅱ. 丰富度、均匀度和物种多样性指数. 生态学报, 1995, 15(3): 268-277.
[22]  高贤明, 马克平, 黄建辉, 等.北京东灵山地区植物群落多样性的研究Ⅺ. 山地草甸β多样性. 生态学报, 1998, 18(1): 24-32.
[23]  Newman E I. Competition and diversity in herbaceous vegetation. Nature, 1973, 244: 310.
[24]  Cartaxana P, Lloyd D. N2, N2O and O2 profiles in a Tagus Estuary Salt Marsh. Estuarine, Coastal and Shelf Science, 1999, 48(6): 751-756.
[25]  韩方虎, 沈禹颖, 王希, 等. 苜蓿草地土壤氮矿化的研究. 草业学报, 2009, 18(2): 11-17. 浏览
[26]  周萍, 刘国彬, 薛萐, 等. 草地生态系统土壤呼吸及其影响因素研究进展. 草业学报, 2009, 18(2): 184-193. 浏览
[27]  吴彩霞, 傅华. 根系分泌物的作用及影响因素. 草业科学, 2009, 26(9): 24-29.
[28]  李东, 曹广民, 黄耀, 等. 青藏高原高寒灌丛草甸生态系统碳平衡研究. 草业科学, 2010, 27(1): 37-41.
[29]  Huston M A, Smith T. Plant succession: life history and competition. American Naturalist, 1987, 130: 168-198.
[30]  Hirota M, Senga Y, Seike Y, et al. Fluxes of carbon dioxide, methane and nitrous oxide in two contrastive fringing zones of coastal lagoon, Lake Nakaumi, Japan. Chemosphere, 2007, 68(3): 597-603.
[31]  Guo Q F, Berry W. Species richness and biomass: dissection of the hump-shaped relationships. Ecology, 1998, 79: 2555-2559.
[32]  Inubushi K, Furukawa Y, Hadi A, et al. Seasonal changes of CO2, CH4 and N2O fluxes in relation to land-use change in tropical peatlands located in coastal area of South Kalimantan. Chemosphere, 2003, 52(3): 603-608.
[33]  Whittaker R H. Vegetation of the Siskiyou Mountains. Ecological Monographs, 1960, 26: 1-80.
[34]  江小雷, 岳静, 张卫国, 等. 生物多样性, 生态系统功能与时空尺度. 草业学报, 2010, 19(1): 219-225. 浏览
[35]  Shingo U, Chun-sim U G, Takahito Y. Dynamics of dissolved O2, CO2, CH4 and N2O in a tropical coastal swamp in southern Thailand. Biogeochemistry, 2000, 49: 191-215.
[36]  Kokkoris G D, Troumbis A Y, Lawton J H. Patterns of species interaction strength in assembled theoretical competition communities. Ecology Letters, 2000, 2: 70-74.
[37]  Smith C J, DeLaune R D, Patrick W H. Nitrous oxide emission from Gulf Coast wetlands. Geochimica et Cosmochimica Acta, 1983, 47(10): 1805-1814.
[38]  Mcnaughton S J. Seregenti grassland ecology: the role of composite environmental factors and contingentcy in community organization. Ecological Monographs, 1983, 53: 291-320.
[39]  杜国祯, 覃光莲, 李自珍, 等. 高寒草甸植物群落中物种丰富度和生产力的关系研究. 植物生态学报, 2003, 27(1): 125-132.
[40]  Allen D E, Dalal R C, Rennenberg H, et al. Spatial and temporal variation of nitrous oxide and methane flux between subtropical mangrove sediments and the atmosphere. Soil Biology and Biochemistry, 2007, 39(2): 622-631.
[41]  Bonser S P, Reader R J. Plant competition and herbivory in relation to vegetation biomass. Ecology, 1995, 54: 775-787.
[42]  李英年, 张法伟, 刘安花, 等. 矮嵩草草甸土壤温湿度对植被盖度变化的响应. 中国农业气象, 2006, 27(4): 265-268.
[43]  王根绪, 胡宏昌, 王一博, 等. 青藏高原多年冻土区典型高寒草地生物量对气候变化的响应. 冰川冻土, 2007, 29(5): 671-679.
[44]  Amouroux D, Roberts G, Rapsomanikis S, et al. Biogenic gas (CH4, N2O, DMS) emission to the atmosphere from near-shore and shelf waters of the north-western Black Sea. Estuarine, Coastal and Shelf Science, 2002, 54(3): 575-587.
[45]  Gaston K J. Global patterns in biodiversity. Nature, 2000, 405: 220-226.
[46]  Magalhes C, Costa J, Teixeira C, et al. Impact of trace metals on denitrification in estuarine sediments of the Douro River estuary, Portugal. Marine Chemistry, 2007, 107(3): 332-341.
[47]  Muoz-Hincapié M, Morell J M, Corredor J E. Increase of nitrous oxide flux to the atmosphere upon nitrogen addition to red mangroves sediments. Marine Pollution Bulletin, 2002, 44(10): 992-996.
[48]  Gregorich E G, Hopkins D W, Elberling B, et al. Emission of CO2, CH4 and N2O from lakeshore soils in an Antarctic dry valley. Soil Biology & Biochemistry, 2006, 38: 3120-3129.
[49]  Sun L G, Zhu R B, Xie Z Q, et al. Emissions of nitrous oxide and methane from Antarctic Tundra: role of penguin dropping deposition. Atmospheric Environment, 2002, 36(31): 4977-4982.
[50]  Zhu R B, Liu Y S, Ma J, et al. Nitrous oxide flux to the atmosphere from two coastal tundra wetlands in eastern Antarctica. Atmospheric Environment, 2008, 42(10): 2437-2447.
[51]  徐继荣, 王友绍, 殷建, 等. 珠江口入海河段DIN形态转化与硝化和反硝化作用. 环境科学学报, 2005, 25(5): 686-692.
[52]  Wang D Q, Chen Z L, Wang J, et al. Summer-time denitrification and nitrous oxide exchange in the intertidal zone of the Yangtze Estuary. Estuarine, Coastal and Shelf Science, 2007, 73(1-2): 43-53.
[53]  王东启, 陈振楼, 王军, 等. 夏季长江口潮间带CH4、CO2和N2O通量特征. 地球化学, 2007, 36(1): 78-88.
[54]  卢昌义, 叶勇, 林鹏, 等. 海南海莲红树林土壤CH4的产生及其某些影响因素. 海洋学报, 1998, 20(6): 132-138.
[55]  仝川, 曾从盛, 王维奇, 等. 闽江河口芦苇潮汐湿地甲烷通量及主要影响因子. 环境科学学报, 2009, 29(1): 207-216.
[56]  曾从盛, 王维奇, 仝川. 不同电子受体及盐分输入对河口湿地土壤甲烷产生潜力的影响. 地理研究, 2008, 27(6): 1321-1330.
[57]  丁维新, 蔡祖聪. 温度对甲烷产生和氧化的影响. 应用生态学报, 2003, 14(4): 604-608.
[58]  Yagi K, Minami K. Effect of organic matter applications on methane emission from some Japanese paddy fields. Soil Science and Plant Nutrition, 1990, 36(4): 599-610.
[59]  谢军飞, 李玉娥. 土壤温度对北京旱地农田N2O排放的影响. 中国农业气象, 2005, 26(10): 7-10.
[60]  郑循华, 王明星, 王跃思, 等. 华东稻麦轮作生态系统的N2O 排放研究. 应用生态学报, 1997, 8(5): 495-499.
[61]  卢妍, 宋长春, 徐洪文, 等. 沼泽湿地草甸N2O排放通量日变化规律研究. 上海环境科学, 2009, 28(4): 139-142.
[62]  Kim J, Verma D P. Seasonal variation in methane emission from a temperate Phragmites dominated marsh: effect of growth stage and plant mediated transport. Global Change Biology, 1998, 5: 433-440
[63]  Law C S, Rees A P, Owens N J P. Temporal variability of denitrification in estuarine sediments. Estuarine, Coastal and Shelf Science, 1991, 33(1): 37-56.
[64]  Moore T R, Dalva M. Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubations. Soil Biology Biochemstry, 1997, 29: 1157-1164.
[65]  Keshab D. Awasthi, Bishal K, et al. Fluxes of methane and carbon dioxide from soil under forest, grazing land, irrigated rice and rainfed field crops in a watershed of Nepal. Biology Fertilizer Soils, 2005, 41: 163-172.
[66]  Sjgersten S, Wookey P A. Climate and resource quality controls on soil respiration across a forest-tundra ecotone in Swedish Lapland. Soil Biology & Biochemstry, 2002, 34: 1633-1654.
[67]  Flanagan P W, Veum A K. Relationships between respiration, weight loss, temperature and moisture in organic residues on tundra. In: Holding A J, Heal O W, MacLean S F, et al. Soil Organism and Decomposition in Tundra. IBP Tundra. Biome Committee, Stockholm, 1974: 249-278.
[68]  Middelburg J J, Klaver G, Nieuwenhuize J, et al. Organic matter mineralization in intertidal sediments along an estuarine gradient. Marine Ecology Progress Series, 1996, 132: 157-168.
[69]  Fiedler S, Sommer M. Methane emissions, groundwater levels and redox potentials of common wetland soils in a temperate-humid climate. Global Biogeochemical, 2000, 14(4): 1081-1093.
[70]  孙志高, 刘景双, 杨继松, 等. 三江平原典型小叶章湿地土壤硝化-反硝化作用与氧化亚氮排放. 应用生态学报, 2007, 18(1): 185-192.
[71]  Dowrick D J, Hughes S, Freeman C, et al. Nitrous oxide emissions from a gully mire in mid-Wales, UK, under simulated summer drought. Biogeochemistry, 1999, 44: 151-162.
[72]  孙志高, 刘景双, 杨继松, 等. 生长季与非生长季小叶章湿地N2O通量特征及排放贡献. 草业学报, 2009, 18(6): 242-247. 浏览
[73]  Magenheimer J F, Moore T R, Chmura G. L, et al. Methane and carbon dioxide flux from a macrotidal salt marsh, Bay of Fundy, New Brunswick. Estuaries, 1996, 19(1): 139-145.
[74]  Krasakopoulou E, Rapsomanikis S, Papadopoulos A, et al. Partial pressure and air-sea CO2 flux in the Aegean Sea during February 2006. Continental Shelf Research, 2009, 29: 1477-1488.
[75]  Frankignoulle M, Bourge I, Canon C, et al. Distribution of surface seawater partial CO2 pressure in the English Channel and in the Southern Bight of the North Sea. Continental Shelf Research, 1996, 16: 381-395.
[76]  Gardner W S, Seitzinger S P, Malgzyk J M. The effects of sea salts on the forms of nitrogen released from estuarine and freshwater sediments: Does ion pairing affect ammonium flux?. Estuaries, 1991, 14(2): 157-166.
[77]  Seitainger S E, Gardner W S, Spratt A K. The effect of salinity on ammonium sorption in aquatic sediments: Implications for benthic nutrient recycling. Estuaries, 1991, 14(2): 167-174.
[78]  Rysgaard S, Thastum P, Dalsgaard T, et al. Effects of salinity on NH4+ adsorption capacity, nitrification, and denitrification in Danish estuarine sediments. Estuaries, 1999, 22(1): 21-30.
[79]  卢妍, 宋长春, 王毅勇, 等. 植物对沼泽湿地生态系统CO2 和CH4 排放的影响. 西北植物学报, 2007, 27(11): 2306-2313.
[80]  Thomas K L, Benstead J, Davies K L, et al. Role of wetland plants in the diurnal control of CH4 and CO2 fluxes in peat. Soil Biology & Biochemistry, 1996, 28: 17-23.
[81]  杨思河, 陈冠雄, 林继慧, 等. 几种木本植物的N2O释放与某些生理活动的关系. 应用生态学报, 1995, 6(4): 337-340.
[82]  Keppler F, John T G, Hamilton, et al. Methane emissions from terrestrial plants under aerobic conditions. Nature, 2006, 439: 187-191.
[83]  Yu K W, Wang Z P, Chen G X. Nitrous oxide and methane transport through rice plants. Biology and Fertility of Soils, 1997, 24: 341-343.
[84]  戴树桂. 环境化学. 北京: 高等教育出版社, 2002: 73-74.
[85]  叶勇, 卢昌义, 林鹏. 海南岛和下面红树林湿地CH4排放的时空变化. 大气科学, 2000, 24(2): 153-156.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133