全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2011 

草地对全球气候变化的响应及其碳汇潜势研究

, PP. 1-22

Keywords: 草地综合顺序分类法(CSCS),NPP分类指数模型,全球气候变化,碳汇潜势

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究用综合顺序分类法(CSCS)分析了1950-2000年和2001-2050年期间的草原类型演替及碳汇动态。证明中国草地的碳汇主体依次是冻原和高山草地、温带湿润草地、斯泰普草地和半荒漠草地大类,占中国潜在草地总面积的85.52%,年碳汇潜力占中国潜在草地年碳汇潜力的93.29%。全球草地的碳汇主体是萨王纳、冻原和高山草地大类,两者的面积和占全球潜在草地总面积的48.50%,年碳汇潜力占全球潜在草地年碳汇潜力的72.22%。在全球气候暖干化的强(A2a)、弱(B2a)情景下,与当前(1950-2000年)情景相比,中国将呈现草地面积减少,林地面积增加的态势;与中国的趋势相反,全球将呈现草地面积增加,林地面积减少的态势。在全球暖干化的A2a和B2a模式下,草地年碳汇潜力,中国将分别提升14.6%和18.5%,全球将分别提升17.3%和16.8%。但两者的增长方式不同,全球是以温带湿润草地大类年碳汇潜力大幅增加为特征,而中国是以负增长为特征。我国的暖干化趋势在草地年碳汇潜力上的反映较之全球更强烈。尽管造成全球气候暖干化的自然因素远非人力所能控制,但系统问题只能靠系统综合的办法治理。这是草地工作者当前的使命。

References

[1]  Hutchinson M F. Centre for Resource and Environmental Studies(Anusplin Version 4.3). Canberra, Australia: The Australian National University, 2004.
[2]  New M, Hulme M, Jones P. Representing twentieth-century space-time climate varibility. Part I: Development of a 1961-90 mean monthly terrestial climatology. Journal of Climate, 1999, 12: 829-856.
[3]  New M, Lister D, Hulme M, et al. A high-resolution data set of surface climate over global land areas. Climate Research, 2002, 21: 1-25.
[4]  Jarvis C H, Stuart N. A comparison among strategies for interpolating maximum and minimum daily air temperatures. Part II: The interaction between the number of guiding variables and the type of interpolation method. Journal of Applied Meteorology, 2001, 40: 1075-1084.
[5]  Hijmans R J, Cameron S E, Parra J L, et al. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 2005, 25: 1965-1978.
[6]  Ren J Z, Hu Z Z, Zhao J, et al. A grassland classification system and its application in China. The Rangeland Journal, 2008, 30: 199-209.
[7]  Lin H L. A new model of Grassland Net Primary Productivity (NPP) based on the integrated orderly classification system of grassland. The Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 2009, (1): 52-56.
[8]  Ni J. Net primary productivity in forests of China: Scaling-up of national inventory data and comparison with model predictions. Forest Ecology and Management, 2003, 176: 485-495.
[9]  Lal R. Soil carbon sequestration in China through agricultural intensification, and restoration of degraded and decertified ecosystems. Land Degradation & Development, 2002, 13: 469-478.
[10]  Piao S L, Fang J Y, Ciais P, et al. The carbon balance of terrestrial ecosystems in China. Nature, 2009, 458: 1009-1013.
[11]  Liu W X, Zhang Z, Wan S Q. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Global Change Biology, 2009, 15: 184-195, doi: 10.1111/j.1365-2486. 2008. 01728.
[12]  韩兴国, 李凌浩, 黄建辉. 生物地球化学概论. 北京: 高等教育出版社与施普林格出版社, 1999: 85-159, 167-196.
[13]  Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles, 1995, 9(1): 23-36.
[14]  方精云, 郭兆迪. 寻找失去的陆地碳汇. 自然杂志, 2007, 29(1): 1-6.
[15]  Del Grosso, Parton S W, Stohlgren T, et al. Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology, 2008, 89: 2117-2126.
[16]  Zaks D P M, Ramankutty N, Barford C C, et al. From Miami to Madison: Investigating the relationship between climate and terrestrial net primary production. Global Biogeochemical Cycles, 2007, 21: GB3004, doi: 10.1029/2006GB002705.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133