Skorová Z, Ineichen K, Wiemken A, et al. The cultivation bias: Different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza, 2007, 18: 1-14.
[2]
Cardoso I M, Boddington C, Janssen B H, et al. Distribution of mycorrhizal fungal spores in soils under agroforestry and monocultural coffee systems in Brazil. Agroforestry Systems, 2003, 58: 33-43.
Sonjak S, Beguiristain T, Leyval C, et al. Temporal temperature gradient gel electrophoresis (TTGE) analysis of arbuscular mycorrhizal fungi associated with selected plants from saline and metal polluted environments. Plant and Soil, 2009, 314: 25-34.
[5]
Solaiman Z M, Abbott L K. Influence of arbuscular mycorrhizal fungi, inoculum level and phosphorus placement on growth and phosphorus uptake of Phyllanthus calycinus under jarrah forest soil. Biology and Fertility of Soils, 2008, 44: 815-821.
[6]
Turnau K, Anielska T, Ryszka P, et al. Establishment of arbuscular mycorrhizal plants originating from xerothermic grasslands on heavy metal rich industrial wastes-new solution for waste revegetation. Plant and Soil, 2008, 305: 267-280.
[7]
Gavito M E, Olsson P A, Rouhier H, et al. Temperature constraints on the growth and functioning of root organ cultures with arbuscular mycorrhizal fungi. New Phytologist, 2005, 168: 179-188.
[8]
de la Providencia I E, de Souza F A, Fernández F, et al. Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups. New Phytologist, 2005, 165: 261-271.
[9]
Tchabi A, Coyne D, Hountondji F, et al. Arbuscular mycorrhizal fungal communities in sub-Saharan Savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological zone. Mycorrhiza, 2008, 18: 181-195.
[10]
Carlsen S C K, Understrup A, Fomsgaard I S, et al. Flavonoids in roots of white clover: Interaction of arbuscular mycorrhizal fungi and a pathogenic fungus. Plant and Soil, 2008, 302: 33-43.
[11]
Comas L H, Eissenstat D M. Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Functional Ecology, 2004, 18: 388-397.
[12]
Gryndler M, Larsen J, Hrelová H, et al. Organic and mineral fertilization, respectively, increase and decrease the development of external mycelium of arbuscular mycorrhizal fungi in a long-term field experiment. Mycorrhiza, 2006, 16: 159-166.
[13]
Vieira R F, Silva C M M S, Silveira A P D. Soil microbial biomass C and symbiotic processes associated with soybean after sulfentrazone herbicide application. Plant and Soil, 2007, 300: 95-103.
[14]
Zhu H H, Yao Q, Sun X T, et al. Colonization, ALP activity and plant growth promotion of native and exotic arbuscular mycorrhizal fungi at low pH. Soil Biology & Biochemistry, 2007, 39: 942-950.
[15]
Arriagada C A, Herrera M A, Borie F, et al. Contribution of arbuscular mycorrhizal and saprobe fungi to the aluminum resistance of Eucalyptus globules. Water Air & Soil Pollution, 2007, 182: 383-394.
Wallace L L. Growth, morphology and gas exchange of mycorrhizal and nonmycorrhizal Panicum coloratum L., a C4 grass species, under different clipping and fertilization regimes. Oecologia, 1981, 49: 272-278.
[18]
Klironomos J N, McCune J, Moutoglis P. Species of arbuscular mycorrhizal fungi affect mycorrhizal responses to simulated herbivory. Applied Soil Ecology, 2004, 26: 133-141.
[19]
Porter W M, Robson A D, Abbott L K. Field survey of the distribution of vesicular-arbuscular mycorrhizal fungi in relation to soil pH. Journal of Applied Ecology, 1987, 24: 659-662.
[20]
Cavallazzi J R P, Filho O K, Stürmer S L, et al. Screening and selecting arbuscular mycorrhizal fungi for inoculating micropropagated apple rootstocks in acid soils. Plant Cell, Tissue and Organ Culture, 2007, 90: 117-129.
[21]
Jin L, Wang S H, Wang X J, et al. Seed size influences arbuscular mycorrhizal symbiosis across leguminous host-plant species at the seedling stage. Symbiosis, 2009, 49(2): 111-116.
Agrawal S C. Factors affecting spore germination in Algae-Review. Folia Microbiologica, 2009, 54(4): 273-302.
[25]
Pond E C, Menge J A. Improved growth of tomato in salinized soil by vesicular arbuscular mycorrhizal fungi collected from saline soils. Mycologia, 1984, 76: 74-84.
[26]
Landis F C, Gargas A, Givnish T J. The influence of arbuscular mycorrhizae and light on Wisconsin (USA) sand savanna understories. Mycorrhiza, 2005, 15: 547-553.
[27]
Jahromi F J, Aroca R, Porcel R, et al. Influence of salinity on the in vitro development of Glomus intraradices and on the in vivo physiological and molecular responses of mycorrhizal lettuce plants. Microbial Ecology, 2008, 55: 45-53.
[28]
Catska V. Interrelationships between vesicular arbuscular mycorrhiza and rhizosphere microflora in apple replant disease. Biologia Plantarum, 1994, 36(1): 99-104.
[29]
Ulrich H, Fouad O, Franz-Josef M, et al. The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradicesup to the formation of fertile spores. FEMS Microbiology Letters, 2006, 254(2): 258-267.
[30]
Artursson V, Jansson J K. Use of bromodeoxyuridine immunocap ture to identify active bacteria associated with arbuscular mycorrhizal hyphae. Applied and Environmental Microbiology, 2003, 69(10): 6208-6215.
Vessey J K, Pawlowski K, Bergman B. Root-based N2-fixing symbioses: Legumes, actinorhizal plants, Parasponia sp. and cycads. Plant and Soil, 2004, 266(122): 205-230.
[33]
Muthukumar T, Udaiyan K. Growth and yield of cowpea as influenced by changes in arbuscular mycorrhiza in response to organic manuring. Journal of Agronomy and Crop Science, 2002, 188: 123-132.
Wang G M, Stribley D P, Tinker P B, et al. Effects of pH on arbuscular mycorrhiza I. field observations on the long-term liming experiments at Rothamsted and Woburn. New Phytologist, 1993, 124: 465-472.
Rodríguez-Echeverría S, Freitas H. Diversity of AMF associated with Ammophila arenaria ssp. arundinacea in Portuguese sand dunes. Mycorrhiza, 2006, 16: 543-552.
[38]
Jayachandran K, Shetty K G. Growth response and phosphorus uptake by arbuscular mycorrhizae of wet prairie sawgrass. Aquatic Botany, 2003, 76: 281-290.
[39]
Wetzel P R, van der Valk A G. Effects of nutrient and soil moisture on competition between Carex stricta, Phalaris arundinacea, and Typha latifolia. Plant Ecology, 1998, 138: 179-190.
[40]
Wang F Y, Liu R J, Lin X G, et al. Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta. Mycorrhiza, 2004, 14: 133-137.
Tahat M M, Kamaruzaman S, Radziah O, et al. Plant host selectivity for multiplication of Glomus mosseae spore. International Journal of Botany, 2008, 4(4): 466-470.
Antunes P M, de Varennes A, Rajcan I, et al. Accumulation of specific flavonoids in soybean (Glycine max (L.) Merr.) as a function of the early tripartite symbiosis with arbuscular mycorrhizal fungi and Bradyrhizobium japonicum (Kirchner) Jordan. Soil Biology & Biochemistry, 2006, 38: 1234-1242.
[45]
Barker L, Kühn C, Weise A. SUT2, a putative sucrose sensor in sieve elements. Plant Cell, 2000, 12: 1153-1164.
[46]
Ge L, Sun S B, Chen A Q, et al. Tomato sugar transporter genes associated with mycorrhiza and phosphate. Journal of Plant Growth Regulation, 2008, 55: 115-123.
[47]
Harrison M J. A sugar transporter from Medicago truncatula: Altered expression pattern in roots during vesicular-arbuscular (VA) mycorrhizal associations. Plant Journal, 1996, 9: 491-503.
[48]
Garcia-Rodriguez S, Pozo M J, Azcon-Aguilar C. Expression of a tomato sugar transporter is increased in leaves of mycorhizal or Phytophthora parasitica-infected plants. Mycorrhiza, 2005, 15: 489-496.
[49]
Wright D P, Scholes J D, Read D J, et al. European and African maize cultivars differ in their physiological and molecular responses to mycorrhizal infection. New Phytologist, 2005, 167: 881-896.
[50]
Kabir Z, O’Halloran I P, Widden P, et al. Vertical distribution of arbuscular mycorrhizal fungi under corn (Zea mays L.) in no-till and conventional tillage systems. Mycorrhiza, 1998, 8: 53-55.
[51]
Rosendahl S, Matzen H B. Genetic structure of arbuscular mycorrhizal populations in fallow and cultivated soils. New Phytologist, 2008, 179: 1154-1161.
[52]
Oehl F, Sieverding E, Mder P, et al. Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia, 2004, 138: 574-583.
[53]
Jr Douds D D, Galvez L, Janke R R, et al. Effect of tillage and farming system upon populations and distribution of vesicular-arbuscular mycorrhizal fungi. Agriculture, Ecosystems & Environment, 1995, 52: 111-118.
[54]
Zhu Y G, Smith S E, Barritt A R, et al. Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant and Soil, 2001, 237: 249-255.
[55]
Vierheilig H, Bago B, Lerat S, et al. Shoot-produced, light-dependent factors are partially involved in the expression of the arbuscular mycorrhizal (AM) status of AM hoet and non-host plants. Journal of Plant Nutrition and Soil Science, 2002, 165: 21-25. 3.0.CO;2-9 target="_blank">
[56]
Lugo M A, Cabello M N. Native arbuscular mycorrhizal fungi (AMF) from mountain grassland (Córdoba, Argentina) I. Seasonal variation of fungal spore diversity. Mycologia, 2002, 94(4): 579-586.
[57]
Ruotsalainen A L, Vestberg H V M. Seasonality of root fungal colonization in low-alpine herbs. Mycorrhiza, 2002, 12: 29-36.
[58]
Mohammad M J, Pan W L, Kennedy A C. Seasonal mycorrhizal colonization of winter wheat and its effect on wheat growth under dryland field conditions. Mycorrhiza, 1998, 8: 139-144.
[59]
Lugo M A, Maza M E G, Cabello M N. Arbuscular mycorrhizal fungi in a mountain grassland II: Seasonal variation of colonization studied, along with its relation to grazing and metabolic host type. Mycologia, 2003, 95(3): 407-415.
Wang Y Y, Vestberg M, Walker C, et al. Diversity and infectivity of arbuscular mycorrhizal fungi in agricultural soils of the Sichuan Province of mainland China. Mycorrhiza, 2008, 18: 59-68.