全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2012 

青藏高原东部4科植物种子大小和比叶面积随海拔和生境的变异

, PP. 42-50

Keywords: 海拔,生境,青藏高原,种子大小,比叶面积

Full-Text   Cite this paper   Add to My Lib

Abstract:

种子大小和比叶面积分别是种子植物的繁殖性状和营养性状之一,也是衡量植物功能的2个重要参考。本研究测量4个青藏高原东部常见科(虎耳草科Saxifragaceae;龙胆科Gentianaceae;毛茛科Ranunculaceae;石竹科Caryophyllaceae)的63种植物的种子大小和比叶面积,分析2种性状之间的相关性,并研究海拔和生境因子对其的影响。结果表明,1)种子大小和比叶面积有边际明显的负相关关系(P=0.066);2)无论整体上还是在科内,青藏高原东部植物种子大小与海拔和生境均不相关(P>0.05);3)区域内植物比叶面积随海拔的升高而显著减小;在科内,海拔对毛茛科、龙胆科植物的比叶面积影响显著,而石竹科、虎耳草科植物的比叶面积与海拔不相关;4)草地中植物比叶面积最小,林下最大;在草地中比叶面积随海拔的升高而显著减小,其他生境下海拔对比叶面积没有影响。研究结果反映了青藏高原东部植物对高寒环境不同的响应和适应。

References

[1]  Reich P B, Ellsworth D S, Walters M B, et al. Generality of leaf train relationships: a test across six biomass. Ecology, 1999, 80: 1955-1969.
[2]  Wright I J, Westoby M, Reich P B. Convergence towards higher leaf mass per area in dry and nutrient poor habitats has different consequences for leaf life span. Journal of Ecology, 2002, 90: 534-543.
[3]  Westoby M A. Leaf-height-seed (LHS) plant ecology scheme. Plant and Soil, 1998, 199: 213-227.
[4]  韩立辉, 尚占环, 任国华, 等. 青藏高原“黑土滩”退化草地植物和土壤对秃斑面积变化的响应. 草业学报, 2011, 20(1): 1-6. 浏览
[5]  曹文侠, 徐长林, 张德罡, 等. 杜鹃灌丛草地土壤容重与水分特征对不同休牧模式的响应. 草业学报, 2011, 20(3): 28-35.
[6]  杨霞, 梁艳, 陈学林, 等. 青藏高原东缘地区常见植物种子大小变异研究. 生态科学, 2007, 26(6): 483-489.
[7]  冯燕, 王彦荣, 胡小文. 水分胁迫对幼苗期霸王叶片生理特性的影响. 草业科学, 2011, 28(4): 577-581.
[8]  冯燕, 王彦荣, 胡小文. 水分胁迫对两种荒漠灌木幼苗生长与水分利用效率的影响. 草业学报, 2011, 20(4): 293-298.
[9]  Garnier E. Growth analysis of congeneric annual and perennials grass species. Journal of Ecology, 1992, 80: 665-675.
[10]  Reich P B, Walters M B, Ellsworth D S. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs, 1992, 62: 365-392.
[11]  Westoby M, Falster D S, Moles A T, et al. Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 2002, 33: 125-159.
[12]  Leishman M R, Westoby M, Jurado E. Correlates of seed size variation - a comparison among five temperate floras. Journal of Ecology, 1995, 83: 517-529.
[13]  Lord J, Westoby M, Leishman M. Seed size and phylogeny in six temperate floras: constraints, niche conservatism, and adaptation. American Naturalist, 1995, 146: 349-364.
[14]  Crisp M D, Arroyo M T K, Cook L G, et al. Phylogenetic biome conservatism on a global scale. Nature, 1995, 458: 754-756.
[15]  张世挺, 杜国祯, 陈家宽. 种子大小变异的进化生态学研究现状与展望. 生态学报, 2004, 23(2): 353-364.
[16]  Hodgson J G, Mackey J M L. The ecological specialization of dicotyledonous families within a local flora: some factors constraining optimization of seed size. New Phytologist, 1986, 104: 497-515.
[17]  郭淑青, 齐威, 王玉林, 等. 青藏高原东缘海拔对植物种子大小的影响. 草业学报, 2010, 19(1): 50-58. 浏览
[18]  柯君, 王慧春, 周华坤, 等. 三江源区高寒草甸43种植物繁殖体质量比较. 草业科学, 2010, 27(3): 15-20.
[19]  Pluess A R, Schütz W, Stcklin J. Seed weight increase with altitude in Swiss Alps between related species but not among population of individual species. Oecologia, 2005, 144: 55-61.
[20]  Baker H G. Seed weight in relation to environmental conditions in California. Ecology, 1972, 53: 997-1010.
[21]  Bu H Y, Ch X L, Xu X L, et al. Seed mass and germination in an alpine meadow on the eastern Tsinghai-Tibet Plateau. Plant Ecology, 2007, 191: 127-149.
[22]  Bondeau A, Kicklighter D W, Kaduk J. Comparing global models of terrestrial net primary productivity (NPP): importance of vegetation structure on seasonal NPP estimates. Global Change Biology, 1999, 5: 35-45.
[23]  Wright I J, Cannon K. Relationships between leaf lifespan and structural defences in low nutrient, sclerophyll flora. Functional Ecology, 2001, 15: 351-359.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133