全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2012 

紫花苜蓿耐盐性研究进展

, PP. 296-305

Keywords: 紫花苜蓿,耐盐基因,耐盐生理,传统育种,基因工程育种

Full-Text   Cite this paper   Add to My Lib

Abstract:

紫花苜蓿(Medicagosativa)是世界上最重要的豆科牧草之一,但盐渍化土地严重制约着其种植范围。培育耐盐新品种是降低盐渍化土地对紫花苜蓿生长和产量影响的有效途径。笔者综述了紫花苜蓿耐盐生理、盐诱导相关基因以及耐盐性育种方面的主要进展,并对紫花苜蓿耐盐性研究的前景进行了讨论。

References

[1]  曹宏, 章会玲, 盖琼辉, 等. 22个紫花苜蓿品种的引种试验和生产性能综合评价. 草业学报, 2011, 20(6): 219-229. 浏览
[2]  Bekki A, Trinchant J C, Rigaud J. Nitrogen fixation (C2H2 reduction) by Medicago nodules and bacteroids under sodium chloride stress. Physiologia Plantarum, 1987, 71: 61-67.
[3]  Dobrenz A K, Robinson D L, Smith S E, et al. Registration of AZ-germ salt-II nondormant alfalfa germplasm. Crop Science, 1989, 29: 493.
[4]  Johnson D W, Smith S E, Dobrenz A K. Registration of AZ-90NDC-ST nondormant alfalfa germplasm with improved forage yield in saline environments. Crop Science, 1991, 31: 1098-1099.
[5]  Al-Doss A A, Smith S E. Registration of AZ-97MEC and AZ-97MEC-ST very non-dormant alfalfa germplasm pools with increased shoot weight and differential response to saline irrigation. Crop Science, 1998, 38: 568.
[6]  Dobrenz A K. Salt-tolerant alfalfa. United States Patent: 6005165, 1999-10-21.
[7]  Downes R W. New herbage Cultivars Medicago sativa CV. Alfalfa. Tropical Grasslands, 1994, 28: 191-192.
[8]  Peel M D, Waldron B L, Jensen K B, et al. Screening for salinity tolerance in alfalfa: A repeatable method. Crop Science, 2004, 44(6): 2049-2053.
[9]  赵桂琴, 慕平, 张勃. 紫花苜蓿基因工程研究进展. 草业学报, 2006, 15(6): 9-18.
[10]  张玉成, 刘凤泉, 刘肇清, 等. 沧州苜蓿的品种特性及利用. 草与畜杂志, 1992, 3: 5-7.
[11]  张令进, 朱树森. 无棣紫花苜蓿. 农业知识, 1997, 9: 23.
[12]  李红, 罗新义, 王殿魁. “龙牧801”和“龙牧803号”苜蓿新品种选育报告. 黑龙江畜牧科技, 1996, 1: 3-7.
[13]  杨青川, 耿华珠, 孙彦. 耐盐苜蓿新品种中苜一号. 作物品种资源, 1999, 2: 26.
[14]  2006年度全国草品种审定委员会审定通过的草品种名录(一). 草业科学, 2007, 24(5): 99.
[15]  李红. 高产、高蛋白、高抗性龙牧806号苜蓿. 牧草与饲料, 2007, 1(3): 64.
[16]  贾春林, 杨秋玲, 吴波, 等. 鲁苜1号紫花苜蓿选育及栽培技术. 山东农业科学, 2008, 5: 100-103.
[17]  李红, 杨曌, 黄新育, 等. 龙牧808紫花苜蓿新品种选育报告. 中国草地学报, 2011, 33(3): 12-17.
[18]  Torabi M, Halim R A, Sinniah U R, et al. Influence of salinity on the germination of Iranian alfalfa ecotypes. African Jouranl of Agricultural Reserch, 2011, 6(19): 4624-4630.
[19]  Rogers M E, Grieve C M, Shannon M C. The response of lucerne (Medicago sativa L.) to sodium sulphate and chloride salinity. Plant and Soil, 1998, 202: 271-280.
[20]  Boughanm N, Michonneau P, Daghfous D, et al. Adaptation of Medicago sativa cv. Gabes to long-term NaCl stress. Journal of Plant Nutrition Soil Science, 2005, 168: 262-268.
[21]  Guerrero-Rodríguez J D, Revell D K, Bellotti W D. Mineral composition of lucerne (Medicago sativa) and white melilot (Melilotus albus) is affected by NaCl salinity of the irrigation water. Animal Feed Science and Technology, 2011, 170: 97-104.
[22]  姜健, 杨宝灵, 夏彤, 等. 紫花苜蓿耐盐种质资源的遗传多样性分析. 草业学报, 2011, 20(5): 119-125. 浏览
[23]  安宝燕, 罗琰, 李加瑞, 等. 紫花苜蓿Na+/H+ 逆向转运蛋白基因在拟南芥中表达提高转基因植株的耐盐性. 作物学报, 2008, 34(4): 557-564.
[24]  Sibole J V, Cabot C, Michalke W, et al. Relationship between expression of the PM H+-ATPase, growth and ion partitioning in the leaves of salt-treated Medicago species. Planta, 2005, 221: 557-566.
[25]  Ginzberg I, Stein H, Kapulnik Y, et al. Isolation and characterization of two different cDNAs of Delta(1)-pyrroline-5-carboxylate synthase in alfalfa, transcriptionally induced upon salt stress. Plant Molecular Biology, 1998, 38: 755-764.
[26]  Miller G, Stein H, Honig A, et al. Responsive modes of Medicago sativa proline dehydrogenase genes during salt stress and recovery dictate free proline accumulation. Planta, 2005, 222(1): 70-79.
[27]  Deutch C E, Winicov I. Post-transcriptional regulation of a salt-inducible alfalfa gene encoding a putative chimeric proline-rich cell wall protein. Plant Molecular Biology, 1995, 27: 411-418.
[28]  Nolan K E, Saeed N A, Rose R J. The stress kinase gene MtSK1 in Medicago truncatula with particular reference to somatic embryogenesis. Plant Cell Reports, 2006, 25: 711-722.
[29]  Bai Y Q, Yang Q C, Kang J M, et al. Isolation and functional characterization of a Medicago sativa L. gene, MsLEA3-1. Molecular Biology Reports, 2012, 39: 2883-2892.
[30]  Jin H C, Sun Y, Yang Q C, et al. Screening of genes induced by salt stress from Alfalfa. Molecular Biology Reports, 2010, 37: 745-753.
[31]  Winicov I. cDNA encoding putative zinc finger motifs from salt-tolerant alfalfa (Medicago sativa L.) cells. Plant Physiology, 1993, 102: 681-682.
[32]  Bastola D R, Pethe V V, Winicov I. Alfin1, a novel zinc-finger protein in alfalfa roots that binds to promoter elements in the salt-inducible MsPRP2 gene. Plant Molecular Biology, 1998, 38: 1123-1135.
[33]  Frugier F, Poirier S, Satiat-Jeunematre B, et al. A Krüppel-like zinc finger protein is involved in nitrogen-fixing root nodule organogenesis. Genes Development, 2000, 14: 475-482.
[34]  Merchan F, Breda C, Hormaeche J, et al. A Krüppel-like transcription factor gene is involved in salt stress responses in Medicago spp.. Plant and Soil, 2003, 257: 1-9.
[35]  Kang J M, Xie W W, Sun Y, et al. Identification of genes induced by salt stress from Medicago truncatula L. seedlings. African Journal of Biotechnology, 2010, 45(9): 7589-7594.
[36]  Chao Y H, Kang J M, Sun Y, et al. Molecular cloning and characterization of a novel gene encoding zinc finger protein from Medicago sativa L.. Molecular Biology Reports, 2009, 36: 2315-2321.
[37]  Rubio M C, Ramos J, Webb K J, et al. Expression studies of superoxide dismutases in nodules and leaves of transgenic alfalfa reveal abundance of iron-containing isozymes, posttranslational regulation, and compensation of isozyme activities. Molecular Plant-Microbe Interactions, 2001, 14(10): 1178-1188.
[38]  Baudouin E, Frendo P, Le G M, et al. A Medicago sativa haem oxygenase gene is preferentially expressed in root nodules. Journal of Experimental Botany, 2004, 55: 43-47.
[39]  韩毅, 沈文飚. 血红素加氧酶/一氧化碳信号系统对汞、镉诱导的紫花苜蓿根部氧化胁迫的调节. 南京: 南京农业大学, 2008.
[40]  Fu G Q, Jin Q J, Lin Y T, et al. Cloning and characterization of a heme oxygenase-2 gene from alfalfa (Medicago sativa L.). Applied Biochemistry Biotechnology, 2011, 165: 1253-1263.
[41]  Gargantini P R, Gonzalez-Rizzo S, Chinchilla D, et al. A CDPK isoform participates in the regulation of nodule number in Medicago truncatula. Plant Journal, 2006, 48(6): 843-856.
[42]  Borsics T, Lados M. cDNA cloning of a mechanical/abiotic stress-inducible calmodulin-related gene from dodder-infected alfalfa. Plant Cell and Environment, 2001, (24): 649-656.
[43]  Winicov I, Button J D. Accumulation of photosynthesis gene transcripts in response to sodium chloride by salt-tolerant alfalfa cells. Planta, 1991, 183: 478-483.
[44]  Luo Y, Liu Y B, Dong Y X, et al. Expression of a putative alfalfa helicase increases tolerance toabiotic stress in Arabidopsis by enhancing the capacities for ROS scavenging and osmotic adjustment. Journal of Plant Physiology, 2009, 166: 385-394.
[45]  Lee K W, Cha J Y, Kim K H, et al. Overexpression of alfalfa mitochondrial HSP23 in prokaryotic and eukaryotic model systems confers enhanced tolerance to salinity and arsenic stress. Biotechnology Letters, 2012, 34(1): 167-174.
[46]  Deak M, Kiss G B, Korkz C, et al. Transformation of Medicago by agrobacterum mediated gene transfer. Plant Cell Reports, 1986, 5: 97-100.
[47]  Bao A K, Wang S M, Wu G Q, et al. Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Science, 2009, 176: 232-240.
[48]  Verdoy D, Coba P T, Redondo F J, et al. Transgenic Medicago truncatula plants that accumulate proline display nitrogen-fixing activity with enhanced tolerance to osmotic stress. Plant Cell Environment, 2006, 29: 1913-1923.
[49]  Coba de la Pea T C, Francisco J R, Esteban M, et al. Nitrogen fixation persists under conditions of salt stress in transgenic Medicago truncatula plants expressing a cyanobacterial flavodoxin. Plant Biotechnology Journal, 2010, 8: 954-965.
[50]  Suárez R, Calderón C, Iturriaga G. Enhanced tolerance to multiple abiotic stresses in transgenic alfalfa accumulating trehalose. Crop Sciences, 2009, 49(5): 1791-1799.
[51]  Li W F, Wang D L, Jin T C, et al. The vacuolar Na+/H+ antiporter gene SsNHX1 from the halophyte Salsola soda confers salt tolerance in transgenic Alfalfa (Medicago sativa L.). Plant Molecular Biology Reporter, 2011, 29: 278-290.
[52]  Jin T C, Chang Q, Li W F, et al. Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa. Plant Cell, Tissue and Organ Culture, 2010, 100: 219-227.
[53]  Winicov I, Bastola D R. Transgenic overexpression of the transcription factor Alfin1 enhances expression of the endogenous MsPRP2 gene in Alfalfa and improves salinity tolerance of the plants. Plant Physiology, 1999, 120: 473-480.
[54]  Winicov I. Alfinl transcription factor overexpression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa. Planta, 2000, 210(3): 416-422.
[55]  刘艳芝, 韦正乙, 邢少辰, 等. HAL1 基因转化苜蓿再生植株及其耐盐性. 吉林农业科学, 2008, 33(6): 21-24.
[56]  王瑛, 朱宝成, 孙毅, 等. 外源lea3基因转化紫花苜蓿的研究. 核农学报, 2007, 21(3): 249-252.
[57]  化烨. GsSAMS基因对苜蓿的遗传转化及转基因新株系的培育. 哈尔滨: 东北农业大学, 2009.
[58]  王玉祥, 王涛, 张博. 转rstB基因苜蓿耐盐性初评. 草地学报, 2008, 16(5): 539-541.
[59]  王玉祥, 张博, 王涛. 盐胁迫对苜蓿叶绿素、甜菜碱含量和细胞膜透性的影响. 草地科学, 2009, 26(3): 53-55.
[60]  梁慧敏, 夏阳, 孙仲序, 等. 根癌农杆菌介导苜蓿遗传转化体系的建立. 农业生物技术学报, 2005, 13: 152-156.
[61]  燕丽萍, 夏阳, 梁慧敏, 等. 转BADH基因苜蓿T1代遗传稳定性和抗盐性研究. 草业学报, 2009, 18(6): 65-71. 浏览
[62]  燕丽萍, 夏阳, 毛秀红, 等. 转BADH基因紫花苜蓿山苜2号品种的抗盐性鉴定及系统选育. 植物学报, 2011, 46(3): 293-301.
[63]  Yan L P, Liu C L, Liang H M, et al. Physiological responses to salt stress of T2 alfalfa progenies carrying a transgene for betaine aldehyde dehydrogenase. Plant Cell, Tissue and Organ Culture, 2012, 108: 191-199.
[64]  Liu Z H, Zhang H M, Li G L, et al. Enhancement of salt tolerance in alfalfa transformed with the gene encoding for betaine aldehyde dehydrogenase. Euphytica, 2011, 178: 363-372.
[65]  张立全, 牛一丁, 郝金凤, 等. 通过花粉管通道法导入红树总DNA获得耐盐紫花苜蓿T0代植株及其RAPD验证. 草业学报, 2011, 20(3): 292-297.
[66]  张立全, 敖登花, 师文贵, 等. 转红树总DNA紫花苜蓿T1代耐盐株系的生理生化特性分析. 草业学报, 2012, 21(2): 149-155.
[67]  Ashraf M, Akram N A. Improving salinity tolerance of plants through conventional breeding and genetic engineering: An analytical comparison. Biotechnology Advances, 2009, 27: 744-752.
[68]  Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants. Crop Science, 2005, 45: 437-448.
[69]  马金星, 张吉宇, 单丽燕, 等. 中国草品种审定登记工作进展. 草业学报, 2011, 20(1): 206-213. 浏览
[70]  Zhu J K. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 2002, 53: 247-273.
[71]  Wang X S, Han J G. Changes of proline content, activity, and active isoforms of antioxidative enzymes in two Alfalfa cultivars under salt stress. Agricultural Sciences in China, 2009, 8(4): 431-440.
[72]  Wang W B, Kim Y H, Lee H S, et al. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiology and Biochemistry, 2009, 47: 570-577.
[73]  Babakhani B, Khavari-Nejad R A, Sajedi R H, et al. Biochemical responses of Alfalfa (Medicago sativa L.) cultivars subjected to NaCl salinity stress. African Journal of Biotechnology, 2011, 10(55): 11433-11441.
[74]  Bao A K, Guo Z G, Zhang H F, et al. A procedure for assessing the salt tolerance of lucerne (Medicago sativa L.) cultivar seedlings by combining agronomic and physiological indicators. New Zealand Journal of Agricultural Research, 2009, 52(4): 435-442.
[75]  景艳霞, 袁庆华. NaCl胁迫对苜蓿幼苗生长及不同器官中盐离子分布的影响. 草业学报, 2011, 20(2): 134-139.
[76]  Wu C H, Wang Q Z, Xie B, et al. Effects of drought and salt stress on seed germination of three leguminous species. African Journal of Biotechnology, 2011, 10(78): 17954-17961.
[77]  申玉华, 徐振军, 李文辉, 等. 维生素C浸种对盐胁迫下紫花苜蓿种子发芽特性的影响. 种子, 2009, 28(7): 42-44.
[78]  解秀娟, 胡晋. 沙引发对紫花苜蓿种子盐逆境下发芽及幼苗生理生化变化的影响. 种子, 2003, 4: 5-6.
[79]  Wang Y Q, Li L, Cui W T, et al. Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. Plant and Soil, 2011, 351: 107-119.
[80]  Rejili M, Telahigue D, Lachiheb B, et al. Impact of gamma radiation and salinity on growth and K+/Na+ balance in two populations of Medicago sativa (L.) cultivar Gabes. Progress in Natural Science, 2008, 18: 1095-1105.
[81]  Maggio A, Chiaranda F Q, Cefariello R, et al. Responses to ozone pollution of alfalfa exposed to increasing salinity levels. Environmental Pollution, 2009, 157: 1445-1452.
[82]  葛莹, 李建东. 盐生植被在土壤积盐—脱盐过程中作用的初探. 草业学报, 1990, 1(1): 70-76.
[83]  Peng Y L, Gao Z W, Gao Y, et al. Eco-physiological characteristics of Alfalfa seedlings in response to various mixed salt-alkaline stresses. Journal of Integrative Plant Biology, 2008, 50(1): 29-39.
[84]  Gao Z W, Zhu H, Gao J C, et al. Germination responses of Alfalfa (Medicago sativa L.) seeds to various salt-alkaline mixed stress. African Jouranl of Agricultural Reserch, 2011, 6(16): 3793-3803.
[85]  张永峰, 梁正伟, 隋丽, 等. 盐碱胁迫对苗期紫花苜蓿生理特性的影响. 草业学报, 2009, 18(4): 230-235. 浏览
[86]  张永峰, 殷波. 混合盐碱胁迫对苗期紫花苜蓿抗氧化酶活性及丙二醛含量的影响. 草业学报, 2009, 18(1): 46-50. 浏览
[87]  Aydi S, Sassi S, Abdelly C. Growth, nitrogen fixation and ion distribution in Medicago truncatula subjected to salt stress. Plant and Soil, 2008, 32: 59-67.
[88]  Mhadhbi H, Aouani M E. Growth and nitrogen-fixing performances of Medicago truncatula-Sinorhizobium meliloti symbioses under salt (NaCl) stress: Micro-and macro-symbiont contribution into symbiosis tolerance. Biosaline Agriculture and High Salinity Tolerance, 2008, 1: 91-98.
[89]  Salah I B, Slatni T, Albacete A, et al. Salt tolerance of nitrogen fixation in Medicago ciliaris is related to nodule sucrose metabolism performance rather than antioxidant system. Symbiosis, 2010, 51: 187-195.
[90]  Rogers M E, Grieve C M, Shannon M C. Plant growth and ion relations in lucerne (Medicago sativa L.) in response to the combined effects of NaCl and P. Plant and Soil, 2003, 253: 187-194.
[91]  AI-Khatib-M M, Collins J C. Between and with in culture variability in salt tolerance in Lucerne. Genetic Resources and Crop Evoluation, 1994, 41(3): 159-164.
[92]  Li R L, Shi C, Fukuda K, et al. Effects of salt and alkali stresses on germination, growth, photosynthesis and ion accumulation in alfalfa (Medicago sativa L.). Soil Science and Plant Nutrition, 2010, 56: 725-733.
[93]  Johnson D W, Smith S E, Dobrenz A K. Genetic and phenotypic relationship in response to NaCl at different developmental stages in alfalfa. Theoretical and Applied Genetics, 1992, 83: 833-838.
[94]  McCoy T J. Tissue culture evaluation of NaCl tolerance in Medicago species. Plant Cell Reports, 1987, 8(3): 31-34.
[95]  于卓, 孙祥, 张文忠, 等. 苜蓿品种间种子萌发及苗期耐盐性差异的研究. 干旱区资源与环境, 1993, 7(2): 106-111.
[96]  李国良, 刘香萍, 迟文峰, 等.紫花苜蓿耐盐性生理的初步研究. 现代畜牧兽医, 2007, 3: 26-27.
[97]  刘春华, 张文淑. 六十九个苜蓿品种耐盐性及其二个耐盐生理指标的研究. 草业科学, 1993, 10(6): 16-22.
[98]  任卫波, 韩建国, 张蕴薇, 等. 红外光谱紫花苜蓿品种耐盐性鉴别方法研究. 光谱学与光谱分析, 2009, 29(2): 386-388.
[99]  李源, 刘贵波, 高洪文, 等. 紫花苜蓿种质耐盐性综合评价及盐胁迫下的生理反应. 草业学报, 2010, 19(4): 79-86. 浏览
[100]  王舟, 刘建秀. DREB/CBF类转录因子研究进展及其在草坪草和牧草抗逆基因工程中的应用. 草业学报, 2011, 20(1): 222-236. 浏览
[101]  耿华珠, 李聪, 李茂森.苜蓿耐盐性鉴定初报. 中国草地, 1990, 2: 69-72.
[102]  Ferradini N, Nicolia A, Capomaccio S, et al. Assessment of simple marker-free genetic transformation techniques in alfalfa. Plant Cell Reporter, 2011, 30: 1991-2000.
[103]  Ferradini N, Nicolia A, Capomaccio S, et al. A point mutation in the Medicago sativa GSA gene provides a novel, efficient, selectable marker for plant genetic engineering. Journal of Biotechnology, 2011, 156: 147-152.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133