全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2012 

米氏冰草营养繁殖潜在种群与现实种群的关系

, PP. 228-234

Keywords: 米氏冰草,种群,构件,营养繁殖,有性繁殖

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了解米氏冰草种群在沙地的适应机制,本研究采取种群繁殖生态学的方法,对米氏冰草种群在沙地植被恢复的不同阶段,营养繁殖潜在种群与现实种群的关系进行了研究。结果表明,在米氏冰草营养繁殖潜在种群中,冬性苗的比率比冬性芽高3~4倍;营养繁殖现实种群中99%以上是由前一年的冬性苗转化形成的。冬性苗中的分蘖节苗转化为现实种群的比率略高于根茎苗。不同生境之间,固定沙地的米氏冰草的冬性根茎苗和冬性分蘖节苗的转化效率分别比流动沙地高1.6~1.8倍。反映了随着沙地植被的恢复,米氏冰草营养繁殖潜在种群对现实种群的作用逐渐增强,从而揭示了无性系植物在沙地的繁殖扩散及调节适应机理,为种群繁殖生态学的研究提供理论依据。

References

[1]  Klimeová J, Klim L. Bud banks and their role in vegetative regeneration: A literature review and proposal for simple classification and assessment. Perspectives in Plant Ecology Evolution and Systematics, 2007, 8: 115-129.
[2]  Abernethy V J, Willby N J. Changes a long a disturbance gradient in the density and composition of propagule banks in floodpla in aquatic habitats. Plant Ecology, 1999, 140(2): 177-190.
[3]  杨允菲. 松嫩平原赖草无性系生长及其构件的年龄结构. 应用生态学报, 2004, 15 (11): 2109-2112.
[4]  李海燕, 李建东, 徐振国, 等. 内蒙古图牧吉自然保护区羊草种群营养繁殖特性的比较. 草业学报, 2011, 20(5): 19-25. 浏览
[5]  Lee P. The impact of burn intensity from wildfires on seed and vegetative banks, and emergent understory in aspendom inated boreal forests. Canadian Journal of Botany, 2004, 82: 1468-1480.
[6]  Liu W, Zhang Q, Liu G. Seed banks of a river-reservoir wetland system and their implications for vegetation development. Aquatic Botany, 2009, 90(4): 7-12.
[7]  王桂芹, 高瑞如, 王玉良, 等. 异质生境空心莲子草的结构基础与生态适应性. 草业学报, 2011, 20(4): 143-152.
[8]  Benson E J. Effects of fire on tallgrass prairie plant population dynamics. Thesis. Manhattan USA: Kansas State University, 2001: 23-29.
[9]  金晓明. 米氏冰草繁殖生态学特征及种群竞争机制. 北京: 北京林业大学, 2011.
[10]  Harper J L. Population Biology of Plants. London: Academic Press, 1977: 15-23.
[11]  Hartnett D C, Setshogo M P, Dalgleish H J. Bud banks of perennial savanna grasses in Botswana. African Journal of Ecology, 2006, (44): 256-263.
[12]  杨允菲. 松嫩平原几种根茎型禾草种群的营养繁殖特性及其持续更新分析. 草业学报, 1996, 5(2): 43-48.
[13]  Kline L, Klineová J. Root sprouting in Rumex acetosella under different nutrient levels. Plant Ecology, 1999, 141: 33-39.
[14]  Tolvanen A, Schroderus J, Henry G H R. Age- and stage-based bud demography of Salix arctica under contrasting muskox grazing pressure in the High Arctic. Evolutionary Ecology, 2001, 15(6): 443-462.
[15]  Knapp A K, Smith M D. Variation among biomes in temporal dynamics of aboveground primary production. Science, 2001, 291: 481-484.
[16]  Benson E J, Hartnet D C, Mann K H. Below ground bud banks and meristem limitation in tallgrass prairie plant populations. American Journal of Botany, 2004, 91: 416-421.
[17]  Benson E, Hartnett D. The role of seed and vegetative reproduction in plant recruitment and demography in tallgrass prairie. Plant Ecology, 2006, 187: 163-178.
[18]  Dalgleish H J, Hartnett D C. The effects of fire frequency and grazing on tallgrass prairie productivity and plant composition are mediated through bud bank demography. Plant Ecology, 2009, 201: 411-420.
[19]  Eckert C G, Dorken M E, Mitchell SA. Loss of sex in clonal populations of a flowering plant, Decodon verticillatus (Lythraceae). Evolution, 1999, 53: 1079-1092.
[20]  Fenner M. Seed Ecology. London: Chapman and Hall, 1985: 66-113.
[21]  Baskin C C, Baskin J M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. San Diego, California, USA: Academic Press, 1998.
[22]  Busso C A, Mueller R J, Richards J H. Effects of drought and defoliation on bud viability in two caespitose grasses. Annals of Botany, 1989, 63: 477-485.
[23]  Tuomi J, Nilsson P, Astrom M. Plant compensatory responses: bud dormancy as an adaptation to herbivory. Ecology, 1994, 75: 1429-1436.
[24]  Hendrickson J R, Briske D D. Axillary bud banks of two semiarid perennial grasses: occurrence, longevity, and contribution to population persistence. Oecologia, 1997, 110: 584-591.
[25]  Maillette L. Structural dynamics of silver birch 1. the fates of buds. Journal of Applied Ecology, 1982, 19(7): 203-211.
[26]  Maillette L. Structural dynamics of silver birch 2. a matrix model of the bud population. Journal of Applied Ecology, 1982, 19(8): 219-231.
[27]  Maillette L. Seasonalmodel of modular growth in plants. Journal of Ecology, 1992, 80(2): 123-130.
[28]  Maillette L. The value of meristem states, as estimated by a discrete time Markov chain. Oikos, 1990, 59(5): 235-241.
[29]  Lehtila K, Tuomi J, Sulkinoja M. Bud demography of mountain birch Betula pubescens spp. Tortuosa near tree line. Ecology, 1994, 75(4): 945-951.
[30]  杨允菲, 郑慧莹, 李建东. 根茎禾草无性系种群年龄结构的研究方法. 东北师范大学学报, 1998, 1(1): 49-53.
[31]  Harper J L. The concept of population in modular organisms. In: May R M. Theoretical Ecology, Principles and Applications. (2nd ed). Oxford: Blackwell Scientific Publications, 1981: 53-77.
[32]  Watson M A, Casper B B. Morphogenetic constraints on patterns of carbon distribution in plants. Annual Review of Ecology and Systematics, 1984, 15(7): 233-258.
[33]  Fox J F. Shoot demographic responses to manipulation of reproductive effort by bud removal in a willow. Oikos, 1995, 72: 283-287.
[34]  Preston K A. Architectural constraint on flower number in a photoperiodic annual. Oikos, 1998, 81: 279-288.
[35]  MacArthur R H, Levins R. The limiting similarity, convergence and divergence of coexisting species. American Naturalist, 1967, 101(5): 337-385.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133