全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2012 

羊草DREB转录因子的系统发育和功能研究

, PP. 190-197

Keywords: 羊草,DREB,渗透胁迫,系统发育

Full-Text   Cite this paper   Add to My Lib

Abstract:

羊草是兼具经济价值和生态价值的重要牧草,具有耐寒、耐旱和耐盐碱的特点。在植物应对非生物胁迫的过程中,DREB转录因子起到关键作用。然而,目前在GenBank的核酸数据库和EST数据库中羊草仅有2条DREB序列,其中只有1个DREB基因的功能得到实验验证。本研究从羊草转录组测序数据中1次挖掘了26条DREBEST。用羊草EST和拟南芥基因组中DREB基因的蛋白序列构建了系统发育树,LcDREB21位于第4类群,是DREB2类转录因子基因。通过RACE,获得了LcDREB21编码区全长(Genbank登入号:JN860437)。荧光定量PCR结果表明,其表达受干旱和高盐诱导。另外,通过酵母单杂交实验证明了LcDREB21具有转录激活功能;通过表达GFP融合蛋白证明其专一性定位在细胞核中。总之,LcDREB21是一个具有转录激活功能和细胞核专一定位能力的转录因子,可能在植物应对干旱和高盐胁迫的过程中起作用。本实验结果丰富了羊草抗逆基因数据库,为植物改良提供了基因资源。

References

[1]  Yamaguchi-Shinozaki K, Shinozaki K. Transcriptinonal regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology, 2006, 57(1): 781-803.
[2]  Rushton P J, Somssich I E. Transcriptional control of plant genes responsive to pathogens. Current Opinion in Plant Biology, 1998, 1(4): 311-315.
[3]  Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. The Plant Cell, 1998, 10(8): 1391-1406.
[4]  Sakuma Y, Maruyama K, Osakabe Y, et al. Functional analysis of an arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. The Plant Cell Online, 2006, 18(5): 1292-1309.
[5]  Peng X J, Ma X Y, Fan W H, et al. Improved drought and salt tolerance of Arabidopsis thaliana by transgenic expression of a novel DREB gene from Leymus chinensis. Plant Cell Reports, 2011, 30(8): 1-10.
[6]  Hong J-P, Kim W T. Isolation and functional characterization of the Ca-DREBLP1 gene encoding a dehydration-responsive element binding-factor-like protein 1 in hot pepper (Capsicum annuum L. cv. Pukang). Planta, 2005, 220(6): 875-888.
[7]  Dubouzet J G, Sakuma Y, Ito Y, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression. The Plant Journal, 2003, 33(4): 751-763.
[8]  Qin F, Kakimoto M, Sakuma Y, et al. Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. The Plant Journal, 2007, 50(1): 54-69.
[9]  王舟, 刘建秀. DREB/CBF类转录因子研究进展及其在草坪草和牧草抗逆基因工程中的应用. 草业学报, 2011,20(1): 222-236.
[10]  Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. The Plant Journal, 1998, 16(6): 735-743.
[11]  Edgar R C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 2004, 32(5): 1792-1797.
[12]  Hall T A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 1999, 41: 95-98.
[13]  Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 2011, 28(10): 2731-2739.
[14]  Nakano T, Suzuki K, Fujimura T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology, 2006, 140(2): 411-432.
[15]  Sakuma Y, Maruyama K, Osakabe Y, et al. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. The Plant Cell, 2006, 18(5): 1292-1309.
[16]  Zhuang J, Chen J M, Yao Q H, et al. Discovery and expression profile analysis of AP2/ERF family genes from Triticum aestivum. Molecular Biology Reports, 2011, 38(2): 745-753.
[17]  Zhuang J, Deng D X, Yao Q H, et al. Discovery, phylogeny and expression patterns of AP2-like genes in maize. Plant Growth Regulation, 2010, 62(1): 51-58.
[18]  Matsukura S, Mizoi J, Yoshida T, et al. Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Molecular Genetics and Genomics, 2010, 283(2): 185-196.
[19]  马江涛, 王宗礼, 黄东光, 等. 基因工程在牧草培育中的应用. 草业学报, 2010, 19(6): 248-262.
[20]  Wang L, Li X, Chen S, et al. Enhanced drought tolerance in transgenic Leymus chinensis plants with constitutively expressed wheat TaLEA3. Biotechnology Letters, 2009, 31(2): 313-319.
[21]  刘公社, 齐冬梅. 羊草生物学研究进展. 草业学报, 2004, 13(5): 6-11.
[22]  李海燕, 李建东, 徐振国, 等. 内蒙古图牧吉自然保护区羊草种群营养繁殖特性的比较. 草业学报, 2011, 20(5): 19-25. 浏览
[23]  颜宏, 赵伟, 尹尚军, 等. 羊草对不同盐碱胁迫的生理响应. 草业学报, 2006, 15(6): 49-55.
[24]  金华, 安晓雯, 姜国斌. 羊草Class Ⅱ几丁质酶基因的克隆及序列分析. 农业科学与技术, 2009, 10(4): 96-100.
[25]  金华, 王璐, 朴永哲, 等. 羊草OEE1基因的克隆及盐胁迫下的表达. 西北植物学报, 2011, 31(5): 881-885.
[26]  李蕊沁, 冯树丹, 于莹, 等. 羊草几丁质酶ClassⅡ基因的克隆、生物信息学分析及原核表达. 中国农业科技导报, 2010, 12(2): 103-110.
[27]  李新玲, 吴姝菊, 王全伟. 羊草乙醛脱氢酶基因LcALDH的克隆与表达分析. 草业学报, 2011, 20(4): 187-193.
[28]  吕召志, 冯树丹, 于莹, 等. 羊草LVAP1基因的克隆及生物信息学分析. 哈尔滨商业大学学报(自然科学版), 2010, 26(6): 651-656.
[29]  Adams M, Kelley J, Gocayne J, et al. Complementary DNA sequencing: expressed sequence tags and human genome project. Science, 1991, 252: 1651-1656.
[30]  Jin H, Plaha P, Park J Y, et al. Comparative EST profiles of leaf and root of Leymus chinensis, a xerophilous grass adapted to high pH sodic soil. Plant Science, 2006, 170(6): 1081-1086.
[31]  王丽娟, 金治平, 王能飞, 等. 羊草叶片cDNA文库的构建及部分表达序列标签的分析. 草业学报, 2009, 18(1): 65-71.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133