Lewandowski I, Clifton-Brown J C, Scurlock J M O, et al. Miscanthus: European experience with a novel energy crop. Biomass and Bioenergy, 2000, 19: 209-227.
[6]
Jogensen U, Schelde K. Energy Crop Water and Nutrient Use Efficiency. Tjele Denmark: Danish Institute of Agricultural Sciences (DIAS), Department of Crop Physiology and Soil Science Research Centre Foulum, 2001. http://infohouse.p2ric.org/ref/17/16275.pdf 浏览
Sang T, Zhu W. China’s bioenergy potential. Global Change Biology, Bioenergy, doi: 1111/j.1757-1707. 2010.01064.x.
[10]
Yan J, Chen W, Li J, et al. Variability and adaptability of Miscanthus species evaluated for energy crop domestication. Global Change Biology, Bioenergy, doi:10.1111/j.1757-1707. 2011.01108x.
[11]
黄世宏. 菌草之梦(八)大放光明的“太阳草”.中国工业报, 2011-06-24. 浏览
[12]
任继周. 农业生产系统生产力及其生产潜力. 草业学报, 1995, 4(2): 15-18.
[13]
Perlack D R, Wright L L, Turhollow A F, et al. Biomass as Feedstock for a Bioenergy and Bioproducts Industry: the Technical Feasibility of a Billion-Ton Annual Supply. U.S. Department of Energy, 2005.
[14]
McLaughlin S B, De La Torre Ugarte D G, Garten C T, et al. High-value renewable energy from prairie grasses. Environmental Science Technology, 2002, 36: 2122-2129.
[15]
Heaton E A, Dohleman F G, Long S. Meeting US biofuel goals with less land: the potential of Miscanthus. Global Change Biology, 2008, 14(9): 2000-2014.
[16]
Somerville C, Young H, Long S P. Feedstocks for lignocellulosic biofuels. Science, 2010, 329: 790-792.
[17]
Tilman D, Hill J, Lehman C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science, 2006, 314: 1598-1600.