全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2012 

狗牙根抗盐性评价及抗盐机理研究进展

, PP. 302-310

Keywords: 狗牙根,抗盐性,评价,离子调节,渗透调节

Full-Text   Cite this paper   Add to My Lib

Abstract:

狗牙根是一种重要的暖季型草坪草、牧草和水土保持植物。笔者对狗牙根抗盐性评价及抗盐机理方面的研究进行了综述。目前已经对狗牙根属内及与其他草种间进行了广泛的抗盐性评价,认为其具有较强的抗盐性,能够在盐碱地生长,并且存在较大的属内基因型变异;从种间来看,狗牙根的抗盐性通常弱于盐草、沟叶结缕草、海雀稗等草种,而强于结缕草、虎尾草、野牛草、假俭草、高羊茅等草种。在抗盐机理上,已经在离子(主要为Na+、K+)调控和渗透调节上取得一些进展,狗牙根主要通过盐腺分泌盐离子、离子选择运输、气孔调节等来降低地上部分盐离子积累,通过积累甜菜碱、脯氨酸、可溶性糖等有机物来进行渗透调节。将来的研究应主要侧重于离子选择性吸收、运输、分配和有机渗透调节物质合成关键基因的确定及表达调控机制。

References

[1]  齐晓芳, 张新全, 凌瑶, 等. 我国狗牙根种质资源研究进展. 草业科学, 2011, 28(3): 444-448.
[2]  刘伟, 张新全, Wu Y Q, 等. 狗牙根属植物多样性与品种选育研究概况. 园艺学报, 2003, 30(5): 623-628.
[3]  赵祥, 谢开云, 王妍君, 等. 晋北盐碱化草地群落斑块的多样性. 草业学报, 2011, 20(4): 51-60.
[4]  杜利霞, 董宽虎, 杨桂英, 等. 不同盐碱化草地对披碱草光合生理特性的影响. 草业学报, 2011, 20(5): 49-56. 浏览
[5]  马江涛, 王宗礼, 黄东光, 等. 基因工程在牧草培育中的应用. 草业学报, 2010, 19(6): 248-262. 浏览
[6]  王舟, 刘建秀. DREB/CBF类转录因子研究进展及其在草坪草和牧草抗逆基因工程中的应用. 草业学报, 2011, 20(1): 222-236. 浏览
[7]  Gausman H W, Cowley W R, Barton S H. Reaction of some grasses to artificial salinization. Agronomy Journal, 1954, 46: 412-414.
[8]  Marcum K B, Pessarakli M. Salinity tolerance and salt gland excretion efficiency of bermudagrass turf cultivars. Crop Science, 2006, 46: 2571-2574.
[9]  陈静波, 阎君, 张婷婷, 等. 四种暖季型草坪草对长期盐胁迫的生长反应. 草业学报, 2008, 17(5): 30-36. 浏览
[10]  程云辉, 周卫星, 王永霞, 等. 沿海滩涂盐渍化地上几种耐盐牧草的筛选试验. 江苏农业科学, 2003, (3): 61-63.
[11]  宗俊勤, 陈静波, 於朝广, 等. 部分暖季型草坪草品种(系)在沿海滩涂的生长适用性及其对土壤盐度的影响. 植物资源与环境学报, 2010, 19(3): 48-54.
[12]  Lee G, Carrow R N, Duncan R R. Criteria for assessing salinity tolerance of the halophytic turfgrass seashore paspalum. Crop Science, 2005, 45(1): 251-258.
[13]  Chen J, Yan J, Qian Y, et al. Growth responses and ion regulation of four warm season turfgrasses to long-term salinity stress. Scientia Horticulturae, 2009, 122(4): 620-625.
[14]  Dudeck A E, Singh S, Giordano C E, et al. Effects of sodium chloride on Cynodon turfgrasses. Agronomy Journal, 1983, 75: 927-930.
[15]  Adavi Z, Razmjoo K, Mobli M. Salinity tolerance of bermudagrass (Cynodon spp. L. C. Rich) cultivars and shoot Na, K and Cl contents under a high saline environment. Journal of Horticultural Science & Biotechnology, 2006, 81(6): 1074-1078.
[16]  陈静波, 阎君, 姜燕琴, 等. 暖季型草坪草优良选系和品种抗盐性的初步评价. 草业学报, 2009, 18(5): 107-114. 浏览
[17]  陈静波, 张婷婷, 阎君, 等. 短期和长期盐胁迫对暖季型草坪草新选系生长的影响. 草业科学, 2008, 25(7): 109-113.
[18]  Youngner V B, Lunt O R. Salinity effects on roots and tops of Bermuda grass. Journal of the British Grassland Society, 1967, 22: 257-259.
[19]  Bauer B K, Poulter R E, Troughton A D, et al. Salinity tolerance of twelve hybrid bermudagrass genotypes. International Turfgrass Society Research Journal, 2009, 11: 313-326.
[20]  王红玲, 阿不来提·阿不都热依木, 齐曼. Na2SO4胁迫下狗牙根K+、Na+离子分布及其抗盐性的评价. 中国草地, 2004, 26(5): 37-42.
[21]  Francois L E. Salinity effects on three turf bermudagrasses. HortScience, 1988, 23: 706-708.
[22]  Ramakrishnan P S, Nagpal R. Adaptation to excess salts in an alkaline soil population of Cynodon dactylon (L.) Pers.. Journal of Ecology, 1973, 61: 369-381.
[23]  Hameed M, Ashraf M. Physiological and biochemical adaptations of Cynodon dactylon (L.) Pers. from the Salt Range (Pakistan) to salinity stress. Flora, 2008, 203: 683-694.
[24]  Akram N, Shahbaz M, Athar H, et al. Morpho-physiological responses of two differently adapted populations of Cynodon dactylon (L.) Pers. and Cenchrus ciliaris L. to salt stress. Pakistan Journal of Botany, 2006, 38(5): 1581-1588.
[25]  周霞, 黄春琼, 张绪元, 等. 狗牙根耐盐性材料初步筛选. 热带农业科学, 2010, 30(4): 20-24.
[26]  Lu S, Peng X, Guo Z, et al. In vitro selection of salinity tolerant variants from triploid bermudagrass (Cynodon transvaalensis×C. dactylon) and their physiological responses to salt and drought stress. Plant Cell Reporters, 2007, 26(8): 1413-1420.
[27]  Marcum K B, Murdoch C L. Growth responses, ion relations, and osmotic adaptations of eleven C4 turfgrasses to salinity. Agronomy Journal, 1990, 82: 892-896.
[28]  Marcum K B. Salinity tolerance mechanisms of grasses in the subfamily Chloridoideae. Crop science, 1999, 39: 1153-1160.
[29]  Lee G, Duncan R R, Carrow R N. Salinity tolerance of selected seashore paspalums and bermudagrasses: Root and verdure responses and criteria. HortScience, 2004, 39: 1143-1147.
[30]  Marcum K B, Pessarakli M, Kopec D M. Relative salinity tolerance of 21 turf-type desert saltgrasses compared to bermudagrass. Hortscience, 2005, 40(3): 827-829.
[31]  Pessarakli M, Touchane H. Growth responses of bermudagrass and seashore paspalum under various levels of sodium chloride stress. Journal of Food Agriculture and Environment, 2006, 4(3&4): 240-243.
[32]  陈静波, 阎君, 姜燕琴, 等. NaC1胁迫对6种暖季型草坪草新选系生长的影响. 植物资源与环境学报, 2007, 16(4): 47-52.
[33]  刘一明,程凤枝,王齐, 等. 四种暖季型草坪植物的盐胁迫反应及其耐盐阈值. 草业学报, 2009, 18(3): 192-199. 浏览
[34]  Zhang J L, Flowers T J, Wang S M. Mechanisms of sodium uptake by roots of higher plants. Plant and Soil, 2010, 326: 45-60.
[35]  Zhu J K. Plant salt tolerance. Trends in Plant Science, 2001, 6: 66-71.
[36]  景艳霞, 袁庆华. NaCl胁迫对苜蓿幼苗生长及不同器官中盐离子分布的影响. 草业学报, 2011, 20(2): 134-139.
[37]  王龙强, 米永伟, 蔺海明. 盐胁迫对枸杞属两种植物幼苗离子吸收和分配的影响. 草业学报, 2011, 20(4): 129-136.
[38]  Hameed M, Ashraf M, Naz N. Anatomical and physiological characteristics relating to ionic relations in some salt tolerant grasses from the Salt Range, Pakistan. Acta Physiologiae Plantarum, 2011, 33: 1399-1409.
[39]  Peng Y, Zhu Y, Mao Y, et al. Alkali grass resists salt stress through high K+ and an endodermis barrier to Na+. Journal of Experimental Botany, 2004, 55: 939-949.
[40]  Reinhardt D H, Rost T L. Salinity accelerates endodermal development and induces an exodermis in cotton seedlings in cotton seedling roots. Environmental and Experimental Botany, 1995, 35: 563-574.
[41]  Maathuis F J M, Amtmann A. K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios. Annals of Botany, 1999, 84: 123-133.
[42]  Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 2003, 91: 503-527.
[43]  Blumwald E. Sodium transport and salt tolerance in plants. Current Opinion in Cell Biology, 2000, 12: 431-434.
[44]  Bradley P M, Morris J T. Relative importance of ion exclusion, secretion, and accumulation in Spartina alterniflora Loisel. Journal of Experimental Botany, 1991, 42: 1525-1532.
[45]  Shi H, Ishitani M, Kim C, et al. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences USA, 2000, 97: 6896-6901.
[46]  Shi H, Lee B H, Wu S J, et al. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology, 2003, 21: 81-85.
[47]  Yang Q, Chen Z Z, Zhou X F, et al. Overexpression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic Arabidopsis. Molecular Plant, 2009, 2: 22-31.
[48]  Robinson M F, Very A, Sanders D, et al. How can stomata contribute to salt tolerance?. Annals of Botany, 1997, 80: 387-393.
[49]  Yeo A R, Kramer D, Lauchli A, et al. Ion distribution in salt-stressed mature Zea mays roots in relation to ultrastructure and retention of sodium. Journal of Experimental Botany, 1977, 28: 17-29.
[50]  Matsushita N, Matoh T. Characterization of Na+ exclusion mechanisms of salt-tolerant reed plants in comparison with salt-sensitive rice plants. Physiologia Plantarum, 1991, 83: 170-176.
[51]  Blom-Zandstra M, Vogelzang S A, Veen B W. Sodium fluxes in sweet pepper exposed to varying sodium concentrations. Journal of Experimental Botany, 1998, 49: 1863-1868.
[52]  Ren Z H, Gao J P, Li L G, et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 2005, 37(10): 1141-1146.
[53]  Takahashi R, Nishio T, Ichizen N, et al. Salt-tolerant reed plants contain lower Na+ and higher K+ than salt-sensitive reed plants. Acta Physiologiae Plantarum, 2007, 29: 431-438.
[54]  Bhatti S, Steinert S, Sarwar G, et al. Ion distribution in relation to leaf age in Leptochloa fusca (L.) Kunth (Kallar Grass). I. K, Na, Ca and Mg. New Phytologist, 1993, 123: 539-545.
[55]  Hasegawa P M, Bressan R A, Handa A K. Cellular mechanisms of salinity tolerance. HortScience, 1986, 21(6): 1317-1324.
[56]  Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681.
[57]  Zhang G, Su Q, An L, et al. Characterization and expression of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropus littoralis. Plant Physiology and Biochemistry, 2008, 46(2): 117-126.
[58]  Hameed M, Ashraf M, Naz N, et al. Anatomical adaptations of Cynodon dactylon (L.) Pers., from the salt range Pakistan, to salinity stress. I. root and stem anatomy. Pakistan Journal of Botany, 2010, 42(1): 279-289.
[59]  Liphshchitz N, Waisel Y. Existence of salt glands in various genera of the Gramineae. New Phytologist, 1974, 73: 507-513.
[60]  Oross J W, Thomson W W. The ultrastructure of the salt glands of Cynodon and Distichlis (Poaceae). American Journal of Botany, 1982, 69(6): 939-949.
[61]  Oross J W, Thomson W W. The ultrastructure of Cynodon salt glands: The apoplast. European Journal of Cell Biology, 1982, 28(2): 257-263.
[62]  Oross J W, Thomson W W. The ultrastructure of Cynodon salt glands: secreting and nonsecreting. European Journal of Cell Biology, 1984, 34: 287-291.
[63]  Oross J W, Leonard R T, Thomson W W. Flux rate and a secretion model for salt glands of grasses. Israel Journal of Botany, 1985, 34: 69-77.
[64]  Worku W, Chapman G P. The salt secretion physiology of chloridoid grass, Cynodon dactylon (L.) Pers., and its implications. SINET: Ethiopian Journal of Science, 1998, 21(1): 1-16.
[65]  Marcum K B, Murdoch C L. Salinity tolerance mechanisms of six C4 turfgrasses. Journal of the American Society for Horticultural Science, 1994, 119: 779-784.
[66]  Amarasinghe V, Watson L. Variation in salt secretory activity of microhairs in grasses. Australian Journal of Plant Physiology, 1989, 16(2):219-229.
[67]  Pollak G, Waisel Y. Ecophysiology of salt excretion in Aeluropus litoralis (Graminae). Physiologia Plantarum, 1979, 47(3): 177-184.
[68]  刘志华, 赵可夫. 盐胁迫对獐茅生长及Na+和K+含量的影响. 植物生理与分子生物学报, 2005, 31(3): 311-316.
[69]  Marcum K B, Anderson S J, Engelke M C. Salt gland ion secretion: A salinity tolerance mechanism among five Zoysiagrass species. Crop Science, 1998, 38: 806-810.
[70]  Liphschitz N, Ilan A, Eshel A, et al. Salt glands on leaves of rhodes grass (Chloris gayana Kth.). Annals of Botany, 1974, 38: 459-462.
[71]  蔡建一, 马清, 周向睿, 等. Na+在霸王适应渗透胁迫中的生理作用. 草业学报, 2011, 20(1): 89-95. 浏览
[72]  Marcum K B, Yensen N P, Leake J E. Genotypic variation in salinity tolerance of Distichlis spicata turf ecotypes. Australian Journal of Experimental Agriculture, 2007, 47: 1506-1511.
[73]  Lee G, Duncan R R, Carrow R N. Nutrient uptake responses and inorganic ion contribution to solute potential under salinity stress in halophytic seashore paspalum. Crop Science, 2007, 47: 2504-2512.
[74]  Yeo A R. Salinity resistance: physiologies and prices. Physiologia Plantarum, 1983, 58: 214-222.
[75]  Huang B, Duncan R R, Carrow R N. Drought-resistance mechanisms of seven warm-season turfgrasses under surface soil drying. Crop Science, 1997, 37: 1863-1869.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133