Lee G, Carrow R N, Duncan R R. Criteria for assessing salinity tolerance of the halophytic turfgrass seashore paspalum. Crop Science, 2005, 45(1): 251-258.
[13]
Chen J, Yan J, Qian Y, et al. Growth responses and ion regulation of four warm season turfgrasses to long-term salinity stress. Scientia Horticulturae, 2009, 122(4): 620-625.
[14]
Dudeck A E, Singh S, Giordano C E, et al. Effects of sodium chloride on Cynodon turfgrasses. Agronomy Journal, 1983, 75: 927-930.
[15]
Adavi Z, Razmjoo K, Mobli M. Salinity tolerance of bermudagrass (Cynodon spp. L. C. Rich) cultivars and shoot Na, K and Cl contents under a high saline environment. Journal of Horticultural Science & Biotechnology, 2006, 81(6): 1074-1078.
Youngner V B, Lunt O R. Salinity effects on roots and tops of Bermuda grass. Journal of the British Grassland Society, 1967, 22: 257-259.
[19]
Bauer B K, Poulter R E, Troughton A D, et al. Salinity tolerance of twelve hybrid bermudagrass genotypes. International Turfgrass Society Research Journal, 2009, 11: 313-326.
Francois L E. Salinity effects on three turf bermudagrasses. HortScience, 1988, 23: 706-708.
[22]
Ramakrishnan P S, Nagpal R. Adaptation to excess salts in an alkaline soil population of Cynodon dactylon (L.) Pers.. Journal of Ecology, 1973, 61: 369-381.
[23]
Hameed M, Ashraf M. Physiological and biochemical adaptations of Cynodon dactylon (L.) Pers. from the Salt Range (Pakistan) to salinity stress. Flora, 2008, 203: 683-694.
[24]
Akram N, Shahbaz M, Athar H, et al. Morpho-physiological responses of two differently adapted populations of Cynodon dactylon (L.) Pers. and Cenchrus ciliaris L. to salt stress. Pakistan Journal of Botany, 2006, 38(5): 1581-1588.
Lu S, Peng X, Guo Z, et al. In vitro selection of salinity tolerant variants from triploid bermudagrass (Cynodon transvaalensis×C. dactylon) and their physiological responses to salt and drought stress. Plant Cell Reporters, 2007, 26(8): 1413-1420.
[27]
Marcum K B, Murdoch C L. Growth responses, ion relations, and osmotic adaptations of eleven C4 turfgrasses to salinity. Agronomy Journal, 1990, 82: 892-896.
[28]
Marcum K B. Salinity tolerance mechanisms of grasses in the subfamily Chloridoideae. Crop science, 1999, 39: 1153-1160.
[29]
Lee G, Duncan R R, Carrow R N. Salinity tolerance of selected seashore paspalums and bermudagrasses: Root and verdure responses and criteria. HortScience, 2004, 39: 1143-1147.
[30]
Marcum K B, Pessarakli M, Kopec D M. Relative salinity tolerance of 21 turf-type desert saltgrasses compared to bermudagrass. Hortscience, 2005, 40(3): 827-829.
[31]
Pessarakli M, Touchane H. Growth responses of bermudagrass and seashore paspalum under various levels of sodium chloride stress. Journal of Food Agriculture and Environment, 2006, 4(3&4): 240-243.
Hameed M, Ashraf M, Naz N. Anatomical and physiological characteristics relating to ionic relations in some salt tolerant grasses from the Salt Range, Pakistan. Acta Physiologiae Plantarum, 2011, 33: 1399-1409.
[39]
Peng Y, Zhu Y, Mao Y, et al. Alkali grass resists salt stress through high K+ and an endodermis barrier to Na+. Journal of Experimental Botany, 2004, 55: 939-949.
[40]
Reinhardt D H, Rost T L. Salinity accelerates endodermal development and induces an exodermis in cotton seedlings in cotton seedling roots. Environmental and Experimental Botany, 1995, 35: 563-574.
[41]
Maathuis F J M, Amtmann A. K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios. Annals of Botany, 1999, 84: 123-133.
[42]
Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 2003, 91: 503-527.
[43]
Blumwald E. Sodium transport and salt tolerance in plants. Current Opinion in Cell Biology, 2000, 12: 431-434.
[44]
Bradley P M, Morris J T. Relative importance of ion exclusion, secretion, and accumulation in Spartina alterniflora Loisel. Journal of Experimental Botany, 1991, 42: 1525-1532.
[45]
Shi H, Ishitani M, Kim C, et al. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences USA, 2000, 97: 6896-6901.
[46]
Shi H, Lee B H, Wu S J, et al. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology, 2003, 21: 81-85.
[47]
Yang Q, Chen Z Z, Zhou X F, et al. Overexpression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic Arabidopsis. Molecular Plant, 2009, 2: 22-31.
[48]
Robinson M F, Very A, Sanders D, et al. How can stomata contribute to salt tolerance?. Annals of Botany, 1997, 80: 387-393.
[49]
Yeo A R, Kramer D, Lauchli A, et al. Ion distribution in salt-stressed mature Zea mays roots in relation to ultrastructure and retention of sodium. Journal of Experimental Botany, 1977, 28: 17-29.
[50]
Matsushita N, Matoh T. Characterization of Na+ exclusion mechanisms of salt-tolerant reed plants in comparison with salt-sensitive rice plants. Physiologia Plantarum, 1991, 83: 170-176.
[51]
Blom-Zandstra M, Vogelzang S A, Veen B W. Sodium fluxes in sweet pepper exposed to varying sodium concentrations. Journal of Experimental Botany, 1998, 49: 1863-1868.
[52]
Ren Z H, Gao J P, Li L G, et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 2005, 37(10): 1141-1146.
[53]
Takahashi R, Nishio T, Ichizen N, et al. Salt-tolerant reed plants contain lower Na+ and higher K+ than salt-sensitive reed plants. Acta Physiologiae Plantarum, 2007, 29: 431-438.
[54]
Bhatti S, Steinert S, Sarwar G, et al. Ion distribution in relation to leaf age in Leptochloa fusca (L.) Kunth (Kallar Grass). I. K, Na, Ca and Mg. New Phytologist, 1993, 123: 539-545.
[55]
Hasegawa P M, Bressan R A, Handa A K. Cellular mechanisms of salinity tolerance. HortScience, 1986, 21(6): 1317-1324.
[56]
Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681.
[57]
Zhang G, Su Q, An L, et al. Characterization and expression of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropus littoralis. Plant Physiology and Biochemistry, 2008, 46(2): 117-126.
[58]
Hameed M, Ashraf M, Naz N, et al. Anatomical adaptations of Cynodon dactylon (L.) Pers., from the salt range Pakistan, to salinity stress. I. root and stem anatomy. Pakistan Journal of Botany, 2010, 42(1): 279-289.
[59]
Liphshchitz N, Waisel Y. Existence of salt glands in various genera of the Gramineae. New Phytologist, 1974, 73: 507-513.
[60]
Oross J W, Thomson W W. The ultrastructure of the salt glands of Cynodon and Distichlis (Poaceae). American Journal of Botany, 1982, 69(6): 939-949.
[61]
Oross J W, Thomson W W. The ultrastructure of Cynodon salt glands: The apoplast. European Journal of Cell Biology, 1982, 28(2): 257-263.
[62]
Oross J W, Thomson W W. The ultrastructure of Cynodon salt glands: secreting and nonsecreting. European Journal of Cell Biology, 1984, 34: 287-291.
[63]
Oross J W, Leonard R T, Thomson W W. Flux rate and a secretion model for salt glands of grasses. Israel Journal of Botany, 1985, 34: 69-77.
[64]
Worku W, Chapman G P. The salt secretion physiology of chloridoid grass, Cynodon dactylon (L.) Pers., and its implications. SINET: Ethiopian Journal of Science, 1998, 21(1): 1-16.
[65]
Marcum K B, Murdoch C L. Salinity tolerance mechanisms of six C4 turfgrasses. Journal of the American Society for Horticultural Science, 1994, 119: 779-784.
[66]
Amarasinghe V, Watson L. Variation in salt secretory activity of microhairs in grasses. Australian Journal of Plant Physiology, 1989, 16(2):219-229.
[67]
Pollak G, Waisel Y. Ecophysiology of salt excretion in Aeluropus litoralis (Graminae). Physiologia Plantarum, 1979, 47(3): 177-184.
Marcum K B, Anderson S J, Engelke M C. Salt gland ion secretion: A salinity tolerance mechanism among five Zoysiagrass species. Crop Science, 1998, 38: 806-810.
[70]
Liphschitz N, Ilan A, Eshel A, et al. Salt glands on leaves of rhodes grass (Chloris gayana Kth.). Annals of Botany, 1974, 38: 459-462.
Marcum K B, Yensen N P, Leake J E. Genotypic variation in salinity tolerance of Distichlis spicata turf ecotypes. Australian Journal of Experimental Agriculture, 2007, 47: 1506-1511.
[73]
Lee G, Duncan R R, Carrow R N. Nutrient uptake responses and inorganic ion contribution to solute potential under salinity stress in halophytic seashore paspalum. Crop Science, 2007, 47: 2504-2512.
[74]
Yeo A R. Salinity resistance: physiologies and prices. Physiologia Plantarum, 1983, 58: 214-222.
[75]
Huang B, Duncan R R, Carrow R N. Drought-resistance mechanisms of seven warm-season turfgrasses under surface soil drying. Crop Science, 1997, 37: 1863-1869.