全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2012 

垂穗披碱草MADS-box基因WM8克隆及分析

, PP. 141-150

Keywords: 垂穗披碱草,MADS-box,WM8基因,序列分析,蛋白结构

Full-Text   Cite this paper   Add to My Lib

Abstract:

通过同源克隆从垂穗披碱草中获得了MADS-box基因家族WM8基因的全长cDNA序列,命名为EnWM8(Genbank登录号为JF683846)。序列分析表明,该cDNA全长1196bp,开放阅读框共编码275个氨基酸,具有典型的MADS-box结构域以及半保守的K区,是MIKC型MADS-box基因,分析认为其与花发育和果实成熟等有关。EnWM8与小麦的WM8、AGL29和fruitful-like基因氨基酸的推导序列的相似性分别高达95.62%,96.72%和96.28%。采用DNAMAN软件进行系统进化树分析显示,EnWM8基因与小麦的TaWM8进化关系最近,与拟南芥的AtWM8、AtAGL29进化关系较远。垂穗披碱草WM8蛋白分子量为13726.7Da,理论等电点为9.14,为亲水性的碱性蛋白,无跨膜结构域,定位于细胞核中,其空间结构主要由α-螺旋、无规则卷曲和延伸链构成。研究结果可为进一步从分子水平探明垂穗披碱草花发育、种子成熟等机制提供参考。

References

[1]  赵忠, 何毅, 贾生福, 等. 肃北县草原资源调查. 草业科学, 2010, 27(11): 53-65.
[2]  杨松, 李春杰, 柴青, 等. 披碱草内生真菌对三种草坪草种子与种苗的化感效应. 草业学报, 2010, 19(4): 33-40. 浏览
[3]  张建波. 川西北高原野生垂穗披碱草遗传多样性研究. 成都: 四川农业大学, 2007: 1-17.
[4]  王力娜, 范术丽, 宋美珍, 等. 植物MADS-box基因的研究进展. 生物技术通报, 2010, (8): 12-19.
[5]  Verelst W, Twell D, de Folter S, et al. MADS-complexes regulate transcriptome dynamics during pollen maturation. Genome Biology, 2007, 8: 249.
[6]  Mandel M A, Yanofsky M F. The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell, 1995, 7: 1763-1771.
[7]  Bowman J L, Smith D R, Meyerowitz E M. Genetic interaction among floral homeotic genes of Arabidopsis thaliana. Development, 1991, 112: 1-20.
[8]  Coen E S, Meyerowitz E M. The war of the whorls: genetic interactions controlling flower development. Nature, 1991, 353: 31-37.
[9]  Meyerowitz E M, Bowman J L, Brockman L L, et al. A genetic and molecular model for flower development in Arabidopsis thaliana. Development, 1991, 112(Suppl.1): 157-167.
[10]  Weigel D, Meyerowitz E M. The ABCs of floral homeotic genes. Cell, 1994, 78: 203-209.
[11]  Honma T, Goto K. Complexes of MADS-box proteins are sufficient to convert leaves into Xoral organs. Nature, 2001, 409: 525-529.
[12]  Theissen G. Development of Xoral organ identity: stories from the MADS house. Current Opinion in Plant Biology, 2001, 4: 75-85.
[13]  Zahn L M, Kong H, Leebens-Mack J H, et al. The evolution of the SEPALLATA subfamily of MADS- box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics, 2005, 169: 2209-2223.
[14]  Soltis D E, Ma H, Frohlich M W, et al. The floral genome: an evolutionary history of gene duplication and shifting patterns of gene expression. Trends in Plant Science, 2007, 12(8): 358-367.
[15]  Ma H, Yanofsky M F, Meyerowitz E M. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcrip tion factor genes. Genes and Development, 1991, 5: 484-495.
[16]  Prasad K, Zhang X, Tobon E, et al. The Arabidopsis B-sister MADS-box protein, GORDITA, represses fruit growth and contributes to integument development. The Plant Journal, 2010, 62(2): 203-214.
[17]  Jang S, Marchal V, Panigrahi K C, et al. The Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring aphot operiodic flowering response. The EMBO Journal, 2008, 27(8): 1277-1288.
[18]  Becker A, Theissen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Molecular Phylogenetics and Evolution, 2003, 29: 464-489.
[19]  de Bodt S, Raes J, van de Peer Y, et al. And then there were many: MADS genes genomic. Trends in Plant Science, 2003, 8: 475-410.
[20]  Riechmann J L, Meyerowitz E M. MADS domain proteins in plant development. Biological Chemistry, 1997, 378: 1079-1101.
[21]  Paolacci A R, Tanzarella O A, Porceddu E, et al. Molecular and phylogenetic analysis of MADS-box genes of MIKC type and chromosome location of SEP-like genes in wheat (Triticum aestivum L.). Molecular Genetics and Genomics, 2007, 278: 689-708.
[22]  Zhao T, Ni Z F, Dai Y, et al. Characterization and expression of 42 MADS-box genes in wheat (Triticum aestivum L.). Molecular Genetics and Genomics, 2006, 276: 334-350.
[23]  Arora R, Agarwal P, Ray S, et al. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics, 2007, 8: 242.
[24]  Preston J C, Kellogg E A. Reconstructing the evolutionary history of paralogous APETALA1/FRUITFULL-Like genes in grasses (Poaceae). Genetics, 2006, 174: 421-437.
[25]  袁春光. 青藏高原野生优质牧草: 垂穗披碱草. 草业与畜牧, 2005, (10): 62.
[26]  周永红, 郑有良, 杨俊良, 等. 10种披碱草属植物的RAPD分析及其系统学意义. 植物分类学报, 1999, 37(5): 425-432.
[27]  严学兵, 周禾, 郭玉霞, 等. 披碱草属植物形态多样性及其主成分分析. 草地学报, 2005, 13(2): 27-32.
[28]  谢国平, 呼天明, 王佺珍, 等. 施N量和收获时间对西藏野生垂穗披碱草种子产量影响研究. 草业学报, 2010, 19(2): 89-96. 浏览
[29]  张妙青, 王彦荣, 张吉宇, 等. 垂穗披碱草种质资源繁殖相关特性遗传多样性研究. 草业学报, 2011, 20(3): 182-191.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133