全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2012 

青海省三江源地区退化草地蒸散特征

, PP. 223-233

Keywords: 涡度相关法,蒸散,三江源地区,青海省,退化草地

Full-Text   Cite this paper   Add to My Lib

Abstract:

了解三江源地区退化草地的蒸散状况有助于认识该地区退化生态系统水循环,对该地区的生态安全有着重要的意义。本研究利用涡度相关法观测青海省玛沁县小嵩草退化草地(34.35°N;100.50°E,海拔3963m)的水热通量,对该地区2006-2008年全年的蒸散情况进行了特征分析。研究表明,2006-2008年三江源退化草地的蒸散值分别为452.24,474.24,459.57mm,降水量分别为460.7,496.1,480.1mm,其中有75%以上的降水分布在生长季,全年水平上蒸散量与降水量之比(ET/PPT)为95%以上,蒸散量与降水量基本持平。生长季日蒸散量1.8~1.9mm/d,而非生长季日蒸散量<0.6mm/d。蒸散日变化和年变化均为单峰型,每年6-7月蒸散量最大,为2.0~2.2mm/d;日蒸散峰值出现在正午左右,其最大值生长季为0.21mm/h,非生长季为0.10mm/h。退化草地蒸散的主要环境因子是净辐射,其次为饱和水汽压亏和空气温度。随着生长季的推进,潜热对这些因素的敏感性逐渐增大。与未退化的矮嵩草草甸相比,退化草地生长季蒸散量较小,而非生长季蒸散量较大,这一结果表明,高寒草地的植被盖度驱动草地生态系统的蒸散。

References

[1]  温学发, 于贵瑞, 孙晓敏. 基于涡度相关技术估算植被/大气间净CO2交换量中的不确定性. 地球科学进展, 2004, 19(4): 658-663.
[2]  Zhao L, Li Y, Xu S, et al. Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai-Tibetan plateau. Global Change Biology, 2006, 12(10): 1940-1953.
[3]  Falge E, Baldocchi D, Olson R, et al. Gap filling strategies for long term energy flux data sets. Agricultural and Forest Meteorology, 2001, 107(1): 71-77.
[4]  Li Y, Zhou L, Xu Z, et al. Comparison of water vapour, heat and energy exchanges over agricultural and wetland ecosystems. Hydrological Processes, 2009, 23(14): 2069-2080.
[5]  Hao Y, Wang Y, Huang X, et al. Seasonal and interannual variation in water vapor and energy exchange over a typical steppe in Inner Mongolia, China. Agricultural and Forest Meteorology, 2007, 146(1-2): 57-69.
[6]  Frank A B. Evapotranspiration from northern semiarid grasslands. Agronomy Journal, 2003, 95(6): 1504-1509.
[7]  Hanson R L. Evapotranspiration and droughts. U.S.Geological Survey Water Supply Paper, 1988, 2375: 99-104.
[8]  Song J. Phenological influences on the albedo of prairie grassland and crop fields. International Journal of Biometeorology, 1999, 42(3): 153-157.
[9]  Lafleur P M, Rouse W R, Carlson D W. Energy balance differences and hydrologic impacts across the northern treeline. International Journal of Climatology, 1992, 12(2): 193-203.
[10]  冯超, 古松, 赵亮, 等. 青藏高原三江源区退化草地生态系统的地表反照率特征. 高原气象, 2010, 29(1): 70-77.
[11]  Gao F, Schaaf C B, Strahler A H, et al. MODIS bidirectional reflectance distribution function and albedo climate modeling grid products and the variability of albedo for major global vegetation types. Jounal of Geophysical Research, 2005, 110: D01104, doi: 10.1029/2004JD005190.
[12]  季国良, 江灏, 吕兰芝. 青藏高原的长波辐射特征. 高原气象, 1995, 14(4): 451-458.
[13]  Rosenberg N J, Blad B L, Verma S B. Microclimate: The Biological Environment. 2nd ed. New York: John Wiley & Sons, 1983.
[14]  王一博, 王根绪, 吴青柏, 等. 植被退化对高寒土壤水文特征的影响. 冰川冻土, 2010, 32(5): 989-998.
[15]  赵亮, 徐世晓, 伏玉玲, 等. 积雪对藏北高寒草甸CO2和水汽通量的影响. 草地学报, 2005, 13(3): 242-247.
[16]  Brutsaert W. Evaporation into the Atmosphere: Theory, History, and Applications. Boston: Kluwer Academic Publicers, 1982.
[17]  Wever L A, Flanagan L B, Carlson P J. Seasonal and interannual variation in evapotranspiration, energy balance and surface conductance in a northern temperate grassland. Agricultural and Forest Meteorology, 2002, 112(1): 31-49.
[18]  Adams J M, Faure H, Faure-Denard L, et al. Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature, 1990, 348: 711-714.
[19]  马致远. 三江源地区水资源的涵养和保护. 地球科学进展, 2004, 19(13): 108-111.
[20]  陈孝全, 苟新京, 高延林, 等. 三江源自然保护区生态环境. 西宁: 青海人民出版社, 2002.
[21]  王堃, 洪绂曾, 宗锦耀. 三江源地区草地资源现状及持续利用途径. 草地学报, 2005, (1): 28-31.
[22]  李博. 中国北方草地退化及其防治对策. 中国农业科学, 1997, 30(6): 1-9.
[23]  刘纪远, 徐新良, 邵全琴. 近 30 年来青海三江源地区草地退化的时空特征. 地理学报, 2008, 63(4): 364-376.
[24]  王启基, 来德珍, 景增春, 等. 三江源区资源与生态环境现状及可持续发展. 兰州大学学报 (自然科学版), 2005, 41(4): 31-37.
[25]  曹广民, 龙瑞军. 三江源区“黑土滩”型退化草地自然恢复的瓶颈及解决途径. 草地学报, 2009, (1): 4-9.
[26]  Baldocchi D D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, 2003, 9(4): 479-492.
[27]  Li S G, Asanuma J, Kotani A, et al. Evapotranspiration from a Mongolian steppe under grazing and its environmental constraints. Journal of Hydrology, 2007, 333(1): 133-143.
[28]  Bremer D J, Auen L M, Ham J M, et al. Evapotranspiration in a prairie ecosystem: effects of grazing by cattle. Agronomy Journal, 2001, 93(2): 338-348.
[29]  Meyers T P. A comparison of summertime water and CO2 fluxes over rangeland for well watered and drought conditions. Agricultural and Forest Meteorology, 2001, 106: 205-214.
[30]  Gu S, Tang Y, Cui X, et al. Characterizing evapotranspiration over a meadow ecosystem on the Qinghai-Tibetan Plateau. Journal of Geophysical Research, 2008, 113: D08118, doi: 10.1029/2007 JD009173.
[31]  赵亮, 古松, 周华坤, 等. 青海省三江源区人工草地生态系统CO2通量. 植物生态学报, 2008, 32(3): 544-554.
[32]  李春, 何洪林, 刘敏, 等. ChinaFLUX CO2通量数据处理系统与应用. 地球信息科学, 2008, 10(5): 557-565.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133