全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2012 

黑麦草对NaHCO3胁迫的光合生理响应

, PP. 184-190

Keywords: 黑麦草,NaHCO3胁迫,光合作用,叶绿素荧光,叶黄素循环

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了探讨牧草对碱胁迫的光合生理响应,采用营养液砂培方法,研究了不同浓度NaHCO3(0,50,100,150,200mmol/L)胁迫对黑麦草幼苗叶片光合色素含量、气体交换参数、叶绿素荧光和叶黄素循环的影响。结果表明,1)随着NaHCO3浓度增大,叶绿素和类胡萝卜素含量逐渐降低,叶绿素a/b不断提高,净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)和气孔限制值(Ls)下降,胞间CO2浓度(Ci)升高,表明非气孔限制是碱胁迫下Pn降低的主要因素。2)PSⅡ初始荧光(Fo)随NaHCO3浓度提高明显上升,最大荧光(Fm)、最大光化学效率(Fv/Fm)、实际光化学效率(ΦPSⅡ)和光化学猝灭(qP)显著下降,非光化学猝灭(NPQ)呈增加趋势。3)随着NaHCO3浓度提高,天线转化效率(Fv′/Fm′)降低,激发能在2个光系统间的分配不平衡性(β/α-1)增大,叶片吸收的光能中用于光反应的比例(P)下降,而天线热耗散的比例(D)增加,叶黄素循环脱环氧化状态(A+Z)/(V+A+Z)呈先升后降趋势,表明依赖叶黄素循环的天线热耗散是碱胁迫下黑麦草耗散过剩光能的主要途径。

References

[1]  Bjorkman O, Powles S B. Inhibition of photosynthetic reactions under water stress: interactions with light level. Planta, 1984, 161: 490-504.
[2]  莫亿伟, 郭振飞, 谢江辉. 温度胁迫对柱花草叶绿素荧光参数和光合速率的影响. 草业学报, 2011, 20(1): 96-101. 浏览
[3]  Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33(3): 317-345.
[4]  Rintamki E, Salo R, Aro E M. Rapid turnover of the D1 reaction center protein of photosystem II as a protection mechanism against photoinhibition in a moss Ceratodon purpureus (Hedw.) Brid. Planta, 1994, 193: 520-529.
[5]  Huang Z A, Jiang D A, Yang Y, et al. Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants. Photosynthetica, 2004, 42: 357-364.
[6]  Anderson J M, Aro E M. Grana stacking and protection of photosystem II in thylakoid membranes of higher plant leaves under sustained high irradiance: a hypothesis. Photosynthesis Research, 1994, 41: 315-326.
[7]  Krause G H, Weis E. Chlorophyll fluorescence and photosynthesis: The basics. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42(2): 313-349.
[8]  Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta General Subjects, 1989, 990: 87-92.
[9]  Braun G, Malkin S. Regulation of the imbalance in light excitation between photosystem Ⅱ and photosystem Ⅰ by cations and by the energized state of the thylakoid membrance. Biochimica et Biophysica Acta, 1990, 1017: 79-90.
[10]  Demmig-Adams B, Adams W W Ⅲ, Baker D H, et al. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum, 1996, 98: 253-264.
[11]  Cheng L L. Xanthophyll cycle pool size and composition in relation to the nitrogen content of apple leaves. Journal of Experimental Botany, 2003, 54: 385-393.
[12]  王艳, 代保清, 辛世刚, 等. 不同土壤基质上结缕草净光合速率及生长的研究. 草业科学, 2010, 27(1): 16-19.
[13]  参考Kenneth K T. Agricultural Salinity Assessment and Management. New York: American Society of Civil Engineers, 1990: 1-17.
[14]  薛延丰, 刘兆普. 不同浓度NaCl和Na2CO3处理对菊芋幼苗光合及叶绿素荧光的影响. 植物生态学报, 2008, 32(1): 161-167.
[15]  张丽平, 王秀峰, 史庆华, 等. 黄瓜幼苗对氯化钠和碳酸氢钠胁迫的生理响应差异. 应用生态学报, 2008, 19(8): 1854-1859.
[16]  杨春武, 李长有, 尹红娟, 等. 小冰麦(Triticum aestivum-Agropyron intermedium)对盐胁迫和碱胁迫的生理响应. 作物学报, 2007, 33(8): 1255-1261.
[17]  Nuttall G, Armstrong R D, Connor D J. Evaluating physicochemical constraints of Calcarosols on wheat yield in the Victorian southern Mallee. Australian Journal of Agricultural Research, 2003, 54: 487-497.
[18]  Hartung W, Leport L, Ratcliffe R G, et al. Abscisic acid concentration, root pH and anatomy do not explain growth differences of chickpea (Cicerarietinum L.) and lupin (Lupinus angustifolius L.) on acid and alkaline soils. Plant and Soil, 2002, 240: 191-199.
[19]  Elsamad H M A, Shaddad M A K. Comparative effect of sodium carbonate, sodium sulphate, and sodium chloride on the growth and related metabolic activities of pea plants. Journal of Plant Nutrition, 1996, 19: 717-728.
[20]  吴成龙, 周春霖, 尹金来, 等. 碱胁迫对不同品种菊芋幼苗生物量分配和可溶性渗透物质含量的影响. 中国农业科学, 2008, 41(3): 901-909.
[21]  Shi D, Sheng Y. Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. Environmental and Experimental Botany, 2005, 54: 8-21.
[22]  麻莹, 曲冰冰, 郭立泉, 等. 盐碱混合胁迫下抗碱盐生植物碱地肤的生长及其茎叶中溶质积累特点. 草业学报, 2007, 16(4): 25-33.
[23]  刘建新, 王鑫, 王瑞娟, 等. NaHCO3胁迫下硝酸镧对黑麦草幼苗光合机构的保护作用. 应用生态学报, 2010, 21(11): 2836-2842.
[24]  黄增荣, 隆小华, 刘兆普, 等. KNO3对NaCl胁迫下两菊芋品种幼苗生长及光合能力的影响. 草业学报, 2011, 20(1): 82-88. 浏览
[25]  马清,楼洁琼,王锁民. Na+对渗透胁迫下霸王幼苗光合特性的影响. 草业学报, 2010, 19(3): 198-203. 浏览
[26]  白文波, 李品芳, 李保国. NaCl和NaHCO3胁迫下马蔺生长与光合特性的反应. 土壤学报, 2008, 45(2): 328-335.
[27]  刘建新, 胡浩斌, 王鑫. 外源NO对盐胁迫下黑麦草幼苗活性氧代谢、多胺含量和光合作用的影响. 植物研究, 2009, 29(3): 313-319.
[28]  李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000: 134-137.
[29]  韩瑞宏, 卢欣石, 高桂娟, 等. 紫花苜蓿(Medicago sativa)对干旱胁迫的光合生理响应.生态学报, 2007, 27(12): 5229-5237.
[30]  Schreiber U, Schliwa U, Bilger W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynthesis Research, 1986, 10: 51-62.
[31]  姜闯道, 高辉远, 邹琦, 等. 二硫苏糖醇处理导致大豆叶片两光系统间激发能分配失衡. 植物生理与分子生物学学报, 2003, 29(6): 561-568.
[32]  Bilger W, Bjrkman O. Role of the xanthophylls cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in Hedera canariensis. Photosythesis Research, 1990, 25: 173-185.
[33]  Hunter N P A, Oquist G, Hurry V M, et al. Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynthesis Research, 1993, 37: 19-39.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133