全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2012 

Ni和Cu胁迫对骆驼蓬抗氧化酶活性的影响

, PP. 147-155

Keywords: ,,骆驼蓬,抗氧化酶,膜脂过氧化

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用温室盆栽法,研究Ni、Cu单一处理对金昌Ni/Cu尾矿库先锋植物骆驼蓬幼苗Ni、Cu积累、膜脂过氧化程度与抗氧化酶系统的影响。结果表明,骆驼蓬幼苗叶片及根部Ni、Cu含量随土壤介质中Ni、Cu含量的增加而增加,Ni主要富集在骆驼蓬的叶片,而Cu主要富集在骆驼蓬的根部;叶片及根部丙二醛(MDA)含量总体随Ni、Cu处理浓度升高而增加,膜脂过氧化程度加剧;Ni胁迫下,骆驼蓬叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸酶(APX)和谷胱甘肽还原酶(GR)活性较对照均有所增强,共同组成植物体内一个有效的活性氧自由基(ROS)清除系统,根部SOD、APX和CAT活性受到抑制,POD和GR受诱导活性增强,在减轻Ni胁迫引起氧化损伤方面起重要作用;Cu胁迫下骆驼蓬叶片SOD、POD、CAT、APX及GR活性较对照均有所提高,减弱了Cu胁迫引起的氧化损伤;根部APX活性受抑制,SOD、POD、CAT及GR活性受诱导增强,在缓解Cu胁迫引起氧化损伤方面发挥重要作用。

References

[1]  廖晓勇, 陈同斌, 阎秀兰, 等. 金昌镍铜矿区植物的重金属含量特征与先锋植物筛选. 自然资源学报, 2007, 22(3): 486-495.
[2]  Gonnelli C, Galardi F, Gabbrielli R. Nickel and copper tolerance and toxicity in three Tuscan populations of Silene paradoxa. Physiologia Plantarum, 2001, 113: 507-514.
[3]  Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress. Physiologia Plantarum, 2008, 133: 481-489.
[4]  Miller G, Suzuki N, Ciftci-Yilmaz S, et al. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant, Cell & Environment, 2010, 33: 453-467.
[5]  袁素芬, 唐海萍. 短命植物生理生态特性对生境的适应性研究进展. 草业学报, 2010, 19(1): 240-247. 浏览
[6]  Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 2002, 7: 405-410.
[7]  Blokhina O, Virolainen E, Fagerstedt K V. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany, 2003, 91: 179-194.
[8]  桂世昌, 杨峰, 张宝艺, 等. 水分胁迫下扁穗牛鞭草根系保护酶活性变化. 草业学报, 2010, 19(5): 278-282. 浏览
[9]  阎君, 于力, 陈静波, 等. 假俭草铝耐性和敏感种源在酸铝土上的生长差异及生理响应. 草业学报, 2010, 19(2): 39-46. 浏览
[10]  Madhava Rao K V, Sresty T V S. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Science, 2000, 157: 113-128.
[11]  Khatun S, Ali M B, Hahn E, et al. Copper toxicity in Withania somnifera: growth and antioxidant enzymes responses of in vitro grown plants. Environmental and Experimental Botany, 2008, 64: 279-285.
[12]  Gajewska E, Skodowska M. Effect of nickel on ROS content and antioxidative enzyme activities in wheat leaves. BioMetals, 2007, 20: 27-36.
[13]  Kumar P, Tewari R K, Sharma P N. Excess nickel-induced changes in antioxidative processes in maize leaves. Journal of Plant Nutrition and Soil Science, 2007, 170: 796-802.
[14]  Jouili H, EI Ferjani E. Changes in antioxidant and lignifying enzyme activities in sunflower roots (Helianthus annuus L.) stressed with copper excess. Comptes Rendus Biologies, 2003, 326: 639-644.
[15]  Srivastava S, Mishra S, Tripathi R D, et al. Copper-induced oxidative stress and responses of antioxidants and phyochelatins in Hydrilla verticillata (L.f.) Royle. Aquatic Toxicology, 2006, 80: 405-415.
[16]  Lu Y, Li X R, He M Z, et al. Seedlings growth and antioxidative enzymes activities in leaves under heavy metal stress differ between two desert plants: a perennial (Peganum harmala) and an annual (Halogeton glomeratus) grass. Acta Physiologiae Plantarum, 2010, 32: 583-590.
[17]  雷冬梅, 段昌群, 张红叶. 矿区废弃地先锋植物齿果酸模在Pb、Zn污染下抗氧化酶系统的变化. 生态学报, 2009, 29(10): 5417-5423.
[18]  马骥, 王勋陵, 赵松岭. 骆驼蓬种子萌发条件与更新生态位的研究. 草业学报, 1996, 5(3): 76-81.
[19]  Kosugi H, Kikugawa K. Thiobarbituric acid reaction of aldehyes and oxidized lipids in glacial acetic acid. Lipids, 1985, 20: 915-920.
[20]  Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 1971, 44: 276-287.
[21]  Chance B, Maehly A C. Assay of catalases and peroxidases. In: Colowick S P, Kaplan N O. Methods in Enzymology. New York: Academic Press, 1955: 764-775.
[22]  Aebi H. Catalase in vitro. Methods in Enzymology, 1984, 105: 121-126.
[23]  Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology, 1981, 22: 867-880.
[24]  Smith I K, Vierheller T L, Thurne C A. Assay of glutathione reductase in crude tissue homogenates using 5, 5′-dithiobis (2-nitrobenzoic acid). Analytical Biochemistry, 1988, 175: 408-413.
[25]  Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 72: 248-254.
[26]  Conesa H M, García G, Faz, et al. Dynamics of metal tolerant plant communities’ development in mine tailings from the Cartagena-La Unión Mining District (SE Spain) and their interest for further revegetation purposes. Chemosphere, 2007, 68: 1180-1185.
[27]  Conesa H M, Schulin R, Nowack B. A laboratory study on revegetation and metal uptake in native plant species from neutral mine tailings. Water, Air, & Soil Pollution, 2007, 183: 201-212.
[28]  李影, 王友保. 4种蕨类草本植物对Cu的吸收和耐性研究. 草业学报, 2010, 19(3): 191-197. 浏览
[29]  Hodges D M, DeLong J M, Forney C F, et al. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 1999, 207: 604-611.
[30]  Ke W S, Xiong Z T, Xie M J, et al. Accumulation, subcellular localization and ecophysiological responses to copper stress in two Daucus carota L. populations. Plant and Soil, 2007, 292: 291-304.
[31]  Gajewska E, Skodowska M. Relations between tocopherol, chlorophyll and lipid peroxides contents in shoots of Ni-treated wheat. Journal of Plant Physiology, 2008, 164: 364-366.
[32]  刘登义, 王友保, 张徐祥, 等. 污灌对小麦幼苗生长及活性氧代谢的影响. 应用生态学报, 2002, 13(10): 1319-1322.
[33]  鲁艳, 李新荣, 何明珠, 等. 不同浓度Ni、Cu处理对骆驼蓬光合作用和叶绿素荧光特性的影响. 应用生态学报, 2011, 22(4): 936-942.
[34]  Prasad S M, Dwivedi R, Zeeshan M. Growth, photosynthetic electron transport, and antioxidant responses of young soybean seedlings to simultaneous exposure of nickel and UV-B stress. Photosynthetica, 2005, 43(2): 177-185.
[35]  Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants. Trends in Plant Science, 2004, 9: 490-498.
[36]  Chaoui A, Mazhoudi S, Ghorbal M H, et al. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Science, 1997, 127: 139-147.
[37]  Zhang F Q, Wang Y S, Lou Z P, et al. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere, 2007, 67: 44-50.
[38]  Noctor G, Foyer C H. Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49: 249-270.
[39]  Israr M, Jewell A, Kumar D, et al. Interactive effects of lead, copper, nickel and zinc on growth, metal uptake and antioxidative metabolism of Sesbania drummondii. Journal of Hazardous Materials, 2011, 186: 1520-1526.
[40]  Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 2010, 48: 909-930.
[41]  周启星. 老工矿区污染生态问题与今后研究展望. 应用生态学报, 2005, 16(6): 1146-1150.
[42]  Navarro M C, Pérez-Sirvent C, Martínez-Sánchez M J, et al. Abandoned mine as a source of contamination by heavy metals: A case study in a semi-arid zone. Journal of Geochemical Exploration, 2008, 96: 183-193.
[43]  廖晓勇, 陈同斌, 武斌, 等. 典型矿业城市的土壤重金属分布特征与复合污染评价——以“镍都”金昌市为例. 地理研究, 2006, 25(5): 843-852.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133