Horie T, Yoshida K, Nakayama, et al. Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa.The Plant Journal, 2001, 27(2): 129-138.
[2]
Rus A, Lee B, Munoz-Mayor A, et al. AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiology, 2004, 136(1): 2500-2511.
[3]
Mser P, Eckelman B, Vaidyanathan R, et al. Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Letters, 2002, 531(2): 157-161.
[4]
Berthomieu P, Conéjéro G, Nublat A, et al. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance)J]. The EMBO Journal, 2003, 22(9): 2004-2014.
[5]
Sunarpi, Horie T, Motoda J, et al. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. The Plant Journal, 2005, 44(6): 928-938.
[6]
Davenport R J, Munoz-Mayor A, Jha D, et al. The Na+ transporter AtHKT1;1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell and Environment, 2007, 30(4): 497-507.
[7]
Munns R, Tester M. Mechanisms of salinity tolerance.Annual Review of Plant Biology, 2008, 59: 651-681.
[8]
Plett D C, Mller I S. Na+ transport in glycophytic plants: what we know and would like to know. Plant Cell and Environment, 2010, 33(4): 612-626.
[9]
Mller I S, Gilliham M, Jha D, et al. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis. The Plant Cell, 2009, 21(7): 2163-2178.
[10]
Farquharson K L. Targeted overexpression of a sodium transporter in the root stele increases salinity tolerance. The Plant Cell, 2009, 21(7): 1875.
Schachtman D P, Schroeder J I. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature, 1994, 370: 655-658.
[21]
Uozumi N, Kim E J, Rubio F, et al. The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis Oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiology, 2000, 122: 1249-1259.
[22]
Ryuichi T, Shenkui L, Tetsuo T. Cloning and functional comparison of a high-affinity K+ transporter gene PhaHKT1 of salt-tolerant and salt-sensitive reed plants. Journal of Experimental Botany, 2007, 58(15-16): 4387-4395.
[23]
Gupta M, Qiu X, Wang L, et al. KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa). Molecular Genetics and Genomics, 2008, 280 (5): 437-452.
[24]
Su H, Balderas E, Vera-Estrella R, et al. Expression of the cation transporter McHKT1 in a halophyte. Plant Molecular Biology, 2003, 52(5): 967-980.
[25]
Liu W H, Fairbairn D J, Reid R J, et al. Characterization of two HKT1 homologues from Eucalyptus camaldulensis that display intrinsic osmosensing capability.Plant Physiology, 2001, 127: 283-294.
[26]
Haro R, Banuelos M A, Senn M E, et al. HKT1 mediates sodium uniport in roots: Pitfalls in the expression of HKT1 in yeast.American Society of Plant Biologists, 2005, 139(3): 1495-1506.