全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2013 

唐古特白刺蛋白激酶基因NtCIPK2超表达载体构建及紫花苜蓿转化研究

DOI: 10.11686/cyxb20130628, PP. 223-229

Keywords: 紫花苜蓿,NtCIPK2基因,超表达载体,遗传转化

Full-Text   Cite this paper   Add to My Lib

Abstract:

环境因素如高盐、干旱或冷冻等严重制约着豆科重要牧草紫花苜蓿的生长发育和产量。根据已发表的盐生植物唐古特白刺蛋白激酶基因NtCIPK2的序列信息(序列号KC823044),利用PCR方法扩增其编码区cDNA,连接pMD-19Tsimple载体并测序,测序结果表明所克隆的DNA片段长度为1362bp,与GenBank上公布的序列完全一致。在此基础上构建植物超表达载体pPZP221-NtCIPK2,采用CaCl2冻融法将该表达载体转入农杆菌GV3101中,然后通过农杆菌介导的方法转化紫花苜蓿的下胚轴,形成愈伤组织后经庆大霉素筛选培养,最终获得7株抗性幼苗。对抗性幼苗进行庆大霉素基因的PCR检测,结果表明,NtCIPK2基因成功整合到紫花苜蓿基因组中,进一步对其进行外源基因的RT-PCR检测,发现只有3株幼苗中的外源基因实现了过量表达,这可能是由于基因插入位点的差异引发的基因沉默所致。本研究的开展为进一步分析转化植株在各种逆境胁迫条件的表现及其遗传稳定性,培育具有多重抗逆能力的苜蓿品种,促进苜蓿产业发展奠定基础。

References

[1]  Cheng N H, Pittman J K, Zhu J K, et al. The protein kinase SOS2 activates the Arabidopsis H+/Ca2+ antiporter CAX1 to integrate calcium transport and salt tolerance. Journal of Biological Chemistry, 2004, 279: 2922-2926.
[2]  李莉, 李毅, 王长春, 等. 番茄LeCIPK3的克隆及非生物胁迫诱导的表达分析. 植物生理学通讯, 2010, 46(7): 659-663.
[3]  Chen L, Ren F, Zhou L, et al. The Brassica napus calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signaling. Journal of Experimental Botany, 2012, 63: 6211-6222.
[4]  聂红资, 杨铁钊, 杨志晓, 等. 不同供钾水平下转AtCIPK23基因烟草钾吸收特征的研究. 河南农业科学, 2009, 6: 53-56.
[5]  Zhao J F, Sun Z F, Zheng J, et al. Cloning and characterization of a novel CBL-interacting protein kinase from maize. Plant Molecular Biology, 2009, 69: 661-674.
[6]  Hu D G, Li M, Luo H, et al. Molecular cloning and functional characterization of MdSOS2 reveals its involvement in salt tolerance in apple callus and Arabidopsis. Plant Cell Reports, 2012, 31: 713-722.
[7]  冯娟, 范昕琦, 徐鹏, 等. 棉属野生种旱地棉蛋白激酶基因GarCIPK8的克隆与功能分析. 作物学报, 2013, 39(1): 34-42.
[8]  Deak M, Kiss G B, Korkz C, et al. Transformation of Medicago by agrobacterium mediated gene transfer. Plant Cell Reports, 1986, 5: 97-100.
[9]  周岩, 张洁, 袁重要, 等. 紫花苜蓿转基因技术及其应用的研究进展. 生物技术通报, 2012, 8: 17-23.
[10]  王鸣刚, 骆焕涛, 李志忠, 等. AtPCS1基因表达载体的构建与转化苜蓿的研究. 草业科学, 2011, 28(2): 201-206.
[11]  王瑛, 朱宝成, 孙毅, 等. 外源lea3基因转化紫花苜蓿的研究. 核农学报, 2007, 21(3): 249-252.
[12]  刘晓琳, 康俊梅, 孙彦, 等. MsNHX1基因转化紫花苜蓿及转基因植株的鉴定. 草地学报, 2008, 16(2): 115-120.
[13]  甘智才, 陈东颖, 张丽, 等. 转柠檬酸合成酶基因苜蓿耐铝性研究. 中国农业科学, 2010, 43(16): 3461-3466.
[14]  徐春波, 王勇, 赵海霞, 等. 冷诱导转录因子AtCBF1转化紫花苜蓿的研究. 草业学报, 2012, 21(4): 168-174. 浏览
[15]  刘晓静, 郝凤, 张德罡, 等. 抗冻基因CBF2表达载体构建及转化紫花苜蓿的研究. 草业学报, 2011, 20(2): 193-200. 浏览
[16]  燕丽萍, 夏阳, 梁慧敏, 等. 转BADH基因苜蓿T1代遗传稳定性和抗盐性研究. 草业学报, 2009, 18(6): 65-71. 浏览
[17]  燕丽萍, 夏阳, 毛秀红, 等. 转BADH基因紫花苜蓿山苜2号品种的抗盐性鉴定及系统选育. 植物学报, 2011, 46(3): 293-301.
[18]  Yan L P, Liu C L, Liang H M, et al. Physiological responses to salt stress of T2 alfalfa progenies carrying a transgene for betaine aldehyde dehydrogenase. Plant Cell, Tissue and Organ Culture, 2012, 108: 191-199.
[19]  李燕, 孙彦, 杨青川, 等. 紫花苜蓿MsZIP基因超表达载体的构建及转基因苜蓿检测. 草业学报, 2012, 21(6): 182-189. 浏览
[20]  Liu L, Fan X D, Wang F W, et al. Coexpression of ScNHX1 and ScVP in transgenic hybrids improves salt and saline-alkali tolerance in Alfalfa (Medicago sativa L.). Journal of Plant Growth Regulation, 2013, 32: 1-8.
[21]  Li W F, Wang D L, Jin T C, et al. The vacuolar Na+/H+ antiporter gene SsNHX1 from the halophyte Salsola soda confers salt tolerance in transgenic Alfalfa (Medicago sativa L.). Plant Molecular Biology Reporter, 2011, 29: 278-290.
[22]  Li R F, Zhang J W, Wu G Y, et al. HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance. Plant Cell and Environment, 2012, 35: 1582-1600.
[23]  曹宏, 章会玲, 盖琼辉, 等. 22个紫花苜蓿品种的引种试验和生产性能综合评价. 草业学报, 2011, 20(6): 219-229. 浏览
[24]  张立全, 张凤英, 哈斯阿古拉. 紫花苜蓿耐盐性研究进展. 草业学报, 2012, 21(6): 296-305. 浏览
[25]  Knight H. Calcium signaling during abiotic stress in plants. International Review of Cytology, 2000, 195: 269-324.
[26]  Kim K N, Cheong Y H, Gupta R, et al. Interaction specificity of Arabidopsis calcineurine B-like calcium sensor and their target kinases. Plant Physiology, 2000, 124: 1844-1853.
[27]  赵晋锋, 余爱丽, 王高鸿, 等. 植物CBL/CIPK网络系统逆境应答研究进展. 中国农业科技导报, 2011, 13(4): 32-38.
[28]  Kolukisaoglu , Weinl S, Blazevic D, et al. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiology, 2004, 134: 43-58.
[29]  Yu Y H, Xia X L, Yin W L, et al. Comparative genomic analysis of CIPK gene family in Arabidopsis and Populus. Plant Growth Regulation, 2007, 52: 101-110.
[30]  Weinl S, Kudla J. The CBL-CIPK Ca2+-decoding signaling network: function and perspectives. New Phytologist, 2009, 184: 517-528.
[31]  Li L B, Zhang Y R, Liu K C, et al. Identification and bioinformatics analysis of SnRK2 and CIPK family genes in sorghum. Agriculture Science in China, 2010, 9: 19-31.
[32]  Chen X F, Gu Z M, Xin D D, et al. Identification and characterization of putative CIPK genes in maize. Journal of Genetics and Genomics, 2011, 38: 77-87.
[33]  陈勋基, 李建平, 郝晓燕, 等. 玉米ZmCIPK21基因的克隆与分析. 核农学报, 2012, 26(6): 0862-0867.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133