全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2013 

土壤重金属镉胁迫对石竹幼苗生长的影响及其机理

DOI: 10.11686/cyxb20130610, PP. 77-87

Keywords: 土壤,,石竹,SOD,AsA-GSH循环

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了揭示土壤重金属镉(Cd)对植物的毒害机理,采用温室盆栽试验方法,研究了不同浓度(0,0.3,1,3,10,30和50mg/kg)Cd污染土壤对石竹幼苗生长以及对抗坏血酸-谷胱甘肽(AsA-GSH)循环的影响。结果表明,石竹幼苗的分蘖数、株高和生物量表现出显著的“低促高抑”的现象,这缘于土壤Cd低浓度(≤1mg/kg)胁迫和胁迫的初期,石竹叶片的超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、单脱氢抗坏血酸还原酶(MDAR)、脱氢抗坏血酸还原酶(DHAR)和谷胱甘肽还原酶(GR)等抗氧化酶活性提高,以抵抗体内逐渐增多的活性氧(ROS);随着Cd浓度的增加和镉胁迫时间的延长,石竹叶片中的超氧阴离子(O2-·)和过氧化氢(H2O2)等ROS爆发,SOD、APX、MDAR、DHAR和GR等抗氧化酶活性迅速降低,抗坏血酸(AsA)和谷胱甘肽(GSH)含量减少,过多的ROS不能被石竹自身的抗氧化系统有效地清除,最终导致膜脂过氧化受到逆境伤害。另外,试验结果验证了APX是清除H2O2的重要酶,GR是生成GSH的重要酶,MDAR还原MDHAR是AsA-GSH循环中再生AsA的主要途径。

References

[1]  He D, Liu Y G, Huang Y E, et al.Effects of calcium on chlorophyll and antioxidant enzymes in Phragmite australis under cadmium stress. Journal of Agro-Enviroment Science, 2007, 26(1): 197-201.
[2]  Tewari R K, Kumar P, Sharma P N. Morphology and physiology of zinc-stressed mulberry plants. Journal of Plant Nutrition and Soil Science, 2008, 171(2): 286-294.
[3]  Wang C, Zhang S H, Wang P F, et al. The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere, 2009, 75(11): 1468-1476.
[4]  Cao H C, Luan Z Q, Wang J D, et al. Potential ecological risk of cadmium, lead and arsenic in agricultural black soil in Jilin Province, China. Stochastic Environmental Research and Risk Assessment, 2009, 23(1): 57-64.
[5]  熊庆娥. 植物生理学试验教程. 成都: 四川成都科学出版社, 2003.
[6]  李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
[7]  Wang A G, Luo G H. Quantitive relation between the reaction the hydroxylamine and superoxide anion radical in plant. Plant Physiology Communications, 1990, (6): 55-57.
[8]  Tanaka K, Suda Y, Kondo N. Ozone tolerance and the ascorbate-dependent hydrogen peroxide decomposing system in chloroplasts. Plant Cell Physiology, 1985, 26: 1425-1431.
[9]  Ellman G L. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 1959, 82: 70-77.
[10]  Nakano Y, Kozi A. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 1981, 22: 867-880.
[11]  Stasolla C, Yeung E C. Ascorbic acid metabolism during white spruce somatic embryo maturation and germination. Physiologia Plantarum, 2001, 111(2): 196-205.
[12]  刘俊祥, 孙振元, 勾萍, 等. 镉胁迫下多年生黑麦草的光合生理响应. 草业学报, 2012, 21(3): 191-197. 浏览
[13]  陈良, 隆小华, 郑晓涛, 等. 镉胁迫下两种菊芋幼苗的光合作用特征及镉吸收转运差异的研究. 草业学报, 2012, 20(6):60-67.
[14]  史刚荣. 耐重金属胁迫的能源植物筛选及其适应性研究. 南京: 南京农业大学, 2009.
[15]  Moral R, Gomez I, Pedreno J N, et al. Effect os cadmium on nutrient distribution, yield and growth of tomato grown in soilless culture. Journal of Plant Nutrition, 1994, 17(6): 953-962.
[16]  朱素琴. 膜脂与植物抗寒性关系研究进展. 湘潭师范学院学报(自然科学版), 2002, 24(4): 49-54.
[17]  刘家女, 周启星, 孙挺. Cd-Pb复合污染条件下3种花卉植物的生长反应及超积累特性研究. 环境科学学报, 2006, 26(12): 2039-2044.
[18]  赵杨迪, 潘远智, 刘碧英, 等. Cd、Pb 单一及复合污染对花叶冷水花生长的影响及其积累特性研究. 农业环境科学学报, 2012, 31(1): 48-53.
[19]  袁沛果, 龚玥绮, 李卜, 等. 镉胁迫对酸枣幼苗生长及生理特性的影响. 北京农学院学报, 2010, 25(3): 14-17.
[20]  赵杨迪, 潘远智, 刘碧英. 玉竹对土壤Cd、Pb 的吸收和耐性研究. 农业环境科学学报, 2010, 29(11): 2087-2093.
[21]  Yeh C M, Chien P S, Huang H J. Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. Journal of Experimental Botany, 2007, 58(3): 659-671.
[22]  Dixit V, Pandey V, Shyam R. Differential antioxidative responses tocadmiumin roots and leaves of pea (Pisum sativum L. cv. Azad)1. Journal of Experimental Botany, 2001, 52: 1101-1109.
[23]  Singh S, Eapen S, D’Souza S F. Cadmium accumulation and its influence on lipid peroxidation and antioxidative system in an aquatic plant, Bacopa monnieri L.. Chemosphere, 2006, 62(6): 233-246.
[24]  刘慧芹, 韩巨才, 刘慧平, 等. 铅梯度胁迫对多年生黑麦草幼苗生理生化特性影响. 草业学报, 2012, 21(6): 57-63. 浏览
[25]  Cho U H, Seo N H. Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Science, 2005, 168(1): 113-120.
[26]  袁祖丽, 吴中红. 镉胁迫对烟草(Nicotiana tabacum)根抗氧化能力和激素含量的影响. 生态学报, 2010, 30(15): 4109-4118.
[27]  Maruta T, Tanouchi A, Tamoi M, et al. Arabidopsis chloroplastic ascorbate peroxidase isoenzymes play a dual role in photoprotection and gene regulation under photooxidative stress. Plant Cell Physiology, 2010, 51(2): 190-200.
[28]  Allen R D, Webb R P, Schake S A. Use of transgenic plants to study antioxidant defenses. Free Radical Biology and Medicine, 1997, 23(3): 473-479.
[29]  罗娅, 汤浩茹, 张勇. 低温胁迫对草莓叶片SOD和AsA-GSH循环酶系统的影响. 园艺学报, 2007, 34(6): 1405-1410.
[30]  Jin Y H, Tao D L, Hao Z Q, et al. Environmental stresses and redox status of ascorbate. Acta Botanica Sinica, 2003, 45(7): 795-801.
[31]  Mittova V, Volokita M, Guy M, et al. Activities of SOD and the ascorbate-glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiologia Plantarum, 2000, 100(1): 42-50.
[32]  鲁丽丽, 刘耕, 李君, 等. 外源GSH对NaCl胁迫下二色补血草盐害缓冲机理的研究. 山东师范大学学报(自然科学版), 2006, 21(2): 108-111.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133