全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2013 

四种宿主植物及其不同栽培密度对AM真菌扩繁的影响

DOI: 10.11686/cyxb20130515, PP. 128-135

Keywords: 宿主植物,栽培密度,丛枝菌根,侵染率,孢子

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了有效的构建丛枝菌根(arbuscularmycorrhizal,AM)真菌的高效繁殖体系,本研究利用盆栽培养法研究玉米、高粱、青葱和三叶草等4种不同的宿主植物及其不同的栽培密度对AM真菌地表球囊霉(Glomusversiforme)扩繁的影响。结果表明,温室条件下,4种宿主植物均可与AM真菌形成共生体,宿主植物种类和栽培密度对生物量、侵染率、孢子密度等均产生显著影响(P<0.05),除白三叶的地径和高粱的叶片数外所有植物的生长参数指标在高密度(10株/盆)栽培下均低于低密度(5株/盆)处理,但10株/盆处理的AM真菌侵染率和孢子密度均显著高于5株/盆(P<0.05)。本实验表明不同的宿主植物与AM真菌的共生状况不同,选择生物量大的玉米,并采用适度的密植栽培虽然会导致对宿主植物生长的不利条件,但却可以增加AM真菌的孢子产量,适合于AM真菌扩繁体系的构建。

References

[1]  Bécard G, Pfeffer P E. Status of nuclear division in arbuscular mycorrhizal fungi during in vitro development. Protoplasma, 1993, 174: 62-68.
[2]  Bianciotto V, Bonfante P. Evidence of DNA replication in an arbuscular mycorrhizal fungus in the absence of the host plant. Protoplasma, 1993, 176: 100-105.
[3]  Gamper H, Peter M, Jansa J. et al. Arbuscular mycorrhizal fungi benefit from 7 years of free air CO2 enrichment in well-fertilized grass and legume monocultures. Global Change Biology, 2004, 10(2): 189-199.
[4]  杨晓红, 孙中海, 邵菊芳, 等. 丛枝菌根真菌培养方法研究进展. 菌物学报, 2004, 23(3): 444-456.
[5]  刘润进. 菌根真菌生物肥料研究开发前景. 菌物学报, 2001, 17(1): 40-45.
[6]  Bharadwaj D P, Lundquist P O, Alstrm S. Impact of plant species grown as monocultures on sporulation and root colonization by native arbuscular mycorrhizal fungi in potato. Applied Soil Ecology, 2007, 35: 213-225.
[7]  Gaur A, Adholeya A. Effects of the particle size of soil-less substrates upon AM fungus inoculum production. Mycorrhiza, 2000, 10: 43-48.
[8]  Barrett G, Campbell C D, Fitter A N, et al. The arbuscular mycorrhizal fungus Glomus hoi can capture and transfer nitrogen from organic patches to its associated host plant at low temperature. Applied Soil Ecology, 2011, 48: 102-105.
[9]  陈宁, 王幼珊, 李晓林, 等. 营养液强度对AM真菌生长发育的影响.菌物学报, 2003, 22(3): 394-401.
[10]  Posada R H, Franco L A, Ramos C. Effect of physical, chemical and environmental characteristics on arbuscular mycorrhizal fungi in Brachiaria decumbens (Stapf) pastures. Journal of Applied Microbiology, 2008, 104: 132-140.
[11]  Landis F C, Gargas A, Givnish T J. The influence of arbuscular mycorrhizae and light on Wisconsin (USA) sand savanna understories 1-Plant community composition. Myrorrhiza, 2005, 15: 547-553.
[12]  Chen B D, Xiao X Y, Zhu Y G, et al. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Science of the Total Environment, 2007, 379: 226-234.
[13]  Wang Z H, Zhang J L, Christie P, et al. Influence of inoculation with Glomus mosseae or Acaulospora morrowiae on arsenic uptake and translocation by maize. Plant Soil, 2008, 311: 235-244.
[14]  Menge J A. Inoculum production. In: Powell C L, Bagyaraj D J. VA Mycorrhiza. USA: CRC Press, 1984: 187-204.
[15]  Sreenivasa M N, Bagyaraj D J. Chloris gayana (Rhodes grass), a better host for the mass production of Glomus fasciculatum inoculum. Plant and Soil, 1988, 106: 289-290.
[16]  Klironomos J N.Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology, 2003, 84(9): 2292-2301.
[17]  Tawaraya K, Tokairin K, Wagatsuma T. Dependence of Allium fistulosum cultivars on the arbuscular mycorrhizal fungus, Glomus fasciculatum. Applied Soil Ecology, 2001, 17: 119-124.
[18]  Phillips J M, Hayman D S. Improved procedure for cleaning roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 1970, 55: 158-161.
[19]  Giovannetti M, Mosse B. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytologist, 1980, 84: 489-500.
[20]  Gerdemann J W, Nicolson T H. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 1963, 46: 235-244.
[21]  Newsham K K, Fitter A H, Watkinson A R. Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends in Ecology and Evolution, 1995, 10: 407-411.
[22]  Johnson N C, Graham J H, Smith F A. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytologist, 1997, 135: 575-585.
[23]  Schweiger P F, Robson A D, Barrow N J. Root hair length determines beneficial effect of a Glomus species on shoot growth of some pasture species. New Phytologist, 1995, 131: 247-254.
[24]  Jaizme-Vega M C, Azcon R. Response of some tropical and subtropical cultures to endomycorrhizal fungi. Mycorrhiza, 1995, 5: 213-217.
[25]  Azcón-Aguilar C, Cantos M, Troncoso A, et al. Beneficial effects of arbuscular mycorrhizas on acclimatization of micropropagated cassava plantlets. Scientific horticulture, 1997, 72: 63-71.
[26]  Bucher M. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytologist, 2007, 173: 11-26.
[27]  孙向伟, 王晓娟, 金樑, 等. 生态环境因子对AM真菌孢子形成与分布的作用机制. 草业学报, 2011, 20(1): 214-221. 浏览
[28]  Douds D D Jr, Schenck N C. Increased sporulation of vesicular-arbuscular mycorrhizal fungi by manipulation of nutrient regimes. Applied and Environmental Microbiology, 1990, 56: 413-418.
[29]  Mathur N, Vyas A. Vesicular arbuscular mycorrhizal relationship of simmondsia hinensis. Phytomorphology, 1994, 44:11-14.
[30]  Al-Raddad A M. Interaction of Glomus mosseae and Paecilomyces lilacinus on Meloidogyne javanica of tomato. Mycorrhiza, 1995, 5(3): 233-236.
[31]  Siqueira J O, Saggin-Júnior O J. Dependency on arbuscular mycorrhizal fungi and responsiveness of some Brazilian native woody species. Mycorrhiza, 2001, 11: 245-255.
[32]  Smith S E, Read D J. Mycorrhizal Symbioses (Third edition). London: Academic Press, 2008: 13-15.
[33]  Baird J M, Walley F L, Shirtliffe S J. Arbuscular mycorrhizal fungi colonization and phosphorus nutrition in organic field pea and lentil. Myrorrhiza, 2010, 20: 541-549.
[34]  Atul-Nayyar A, Hamel C, Hanson K, et al. The arbuscular mycorrhizal symbiosis links N mineralization to plant demand. Myrorrhiza, 2009, 19: 239-246.
[35]  Liu A, Hamel C, Hamilton R I, et al. Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Myrorrhiza, 2000, 9: 331-336.
[36]  Caris C, Hrdt W, Hawkins H J, et al. Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants. Myrorrhiza, 1998, 8: 35-39.
[37]  Neumann E, Schmid B, Rmheld V, et al. Extraradical development and contribution to plant performance of an arbuscular mycorrhizal symbiosis exposed to complete or partial rootzone drying. Myrorrhiza, 2009, 20: 21-23.
[38]  Toussaint J P, Smith F A, Smith S E. Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Myrorrhiza, 2007, 17: 291-297.
[39]  García I V, Mendoza R E. Arbuscular mycorrhizal fungi and plant symbiosis in a saline-sodic soil. Myrorrhiza, 2007, 17: 167-174.
[40]  Mena-Violante H G, Ocampo-Jiménez O, Dendooven L, et al. Arbuscular mycorrhizal fungi enhance fruit growth and quality of chile ancho (Capsicum annuum L. cv San Luis) plants exposed to drought. Myrorrhiza, 2006, 16: 261-267.
[41]  Yu Y, Zhang S Z, Huang H L. Behavior of mercury in a soil-plant syesten as affected by inoculuation with the arbuscular mycorrhizal fungus Glomus mosseae. Myrorrhiza, 2010, 20: 407-414.
[42]  Kamińska M, Klamkowski K, Berniak H, et al. Response of mycorrhizal periwinkle plants to aster yellows phytoplasma infection. Myrorrhiza, 2010, 20: 161-166.
[43]  Elsen A, Gervacio D, Swennen R, et al. AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect. Myrorrhiza, 2008, 18: 251-256.
[44]  Gianinazzi S, Gollotte A, Binet M N, et al. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Myrorrhiza, 2010, 20: 519-530.
[45]  钟凯, 王淼淼, 刘润进. AM真菌生活史、遗传特性与纯培养的生物学基础. 菌物学报, 2009, 28(2): 310-314.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133