Bécard G, Pfeffer P E. Status of nuclear division in arbuscular mycorrhizal fungi during in vitro development. Protoplasma, 1993, 174: 62-68.
[2]
Bianciotto V, Bonfante P. Evidence of DNA replication in an arbuscular mycorrhizal fungus in the absence of the host plant. Protoplasma, 1993, 176: 100-105.
[3]
Gamper H, Peter M, Jansa J. et al. Arbuscular mycorrhizal fungi benefit from 7 years of free air CO2 enrichment in well-fertilized grass and legume monocultures. Global Change Biology, 2004, 10(2): 189-199.
Bharadwaj D P, Lundquist P O, Alstrm S. Impact of plant species grown as monocultures on sporulation and root colonization by native arbuscular mycorrhizal fungi in potato. Applied Soil Ecology, 2007, 35: 213-225.
[7]
Gaur A, Adholeya A. Effects of the particle size of soil-less substrates upon AM fungus inoculum production. Mycorrhiza, 2000, 10: 43-48.
[8]
Barrett G, Campbell C D, Fitter A N, et al. The arbuscular mycorrhizal fungus Glomus hoi can capture and transfer nitrogen from organic patches to its associated host plant at low temperature. Applied Soil Ecology, 2011, 48: 102-105.
Posada R H, Franco L A, Ramos C. Effect of physical, chemical and environmental characteristics on arbuscular mycorrhizal fungi in Brachiaria decumbens (Stapf) pastures. Journal of Applied Microbiology, 2008, 104: 132-140.
[11]
Landis F C, Gargas A, Givnish T J. The influence of arbuscular mycorrhizae and light on Wisconsin (USA) sand savanna understories 1-Plant community composition. Myrorrhiza, 2005, 15: 547-553.
[12]
Chen B D, Xiao X Y, Zhu Y G, et al. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Science of the Total Environment, 2007, 379: 226-234.
[13]
Wang Z H, Zhang J L, Christie P, et al. Influence of inoculation with Glomus mosseae or Acaulospora morrowiae on arsenic uptake and translocation by maize. Plant Soil, 2008, 311: 235-244.
[14]
Menge J A. Inoculum production. In: Powell C L, Bagyaraj D J. VA Mycorrhiza. USA: CRC Press, 1984: 187-204.
[15]
Sreenivasa M N, Bagyaraj D J. Chloris gayana (Rhodes grass), a better host for the mass production of Glomus fasciculatum inoculum. Plant and Soil, 1988, 106: 289-290.
[16]
Klironomos J N.Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology, 2003, 84(9): 2292-2301.
[17]
Tawaraya K, Tokairin K, Wagatsuma T. Dependence of Allium fistulosum cultivars on the arbuscular mycorrhizal fungus, Glomus fasciculatum. Applied Soil Ecology, 2001, 17: 119-124.
[18]
Phillips J M, Hayman D S. Improved procedure for cleaning roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 1970, 55: 158-161.
[19]
Giovannetti M, Mosse B. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytologist, 1980, 84: 489-500.
[20]
Gerdemann J W, Nicolson T H. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 1963, 46: 235-244.
[21]
Newsham K K, Fitter A H, Watkinson A R. Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends in Ecology and Evolution, 1995, 10: 407-411.
[22]
Johnson N C, Graham J H, Smith F A. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytologist, 1997, 135: 575-585.
[23]
Schweiger P F, Robson A D, Barrow N J. Root hair length determines beneficial effect of a Glomus species on shoot growth of some pasture species. New Phytologist, 1995, 131: 247-254.
[24]
Jaizme-Vega M C, Azcon R. Response of some tropical and subtropical cultures to endomycorrhizal fungi. Mycorrhiza, 1995, 5: 213-217.
[25]
Azcón-Aguilar C, Cantos M, Troncoso A, et al. Beneficial effects of arbuscular mycorrhizas on acclimatization of micropropagated cassava plantlets. Scientific horticulture, 1997, 72: 63-71.
[26]
Bucher M. Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytologist, 2007, 173: 11-26.
Douds D D Jr, Schenck N C. Increased sporulation of vesicular-arbuscular mycorrhizal fungi by manipulation of nutrient regimes. Applied and Environmental Microbiology, 1990, 56: 413-418.
[29]
Mathur N, Vyas A. Vesicular arbuscular mycorrhizal relationship of simmondsia hinensis. Phytomorphology, 1994, 44:11-14.
[30]
Al-Raddad A M. Interaction of Glomus mosseae and Paecilomyces lilacinus on Meloidogyne javanica of tomato. Mycorrhiza, 1995, 5(3): 233-236.
[31]
Siqueira J O, Saggin-Júnior O J. Dependency on arbuscular mycorrhizal fungi and responsiveness of some Brazilian native woody species. Mycorrhiza, 2001, 11: 245-255.
[32]
Smith S E, Read D J. Mycorrhizal Symbioses (Third edition). London: Academic Press, 2008: 13-15.
[33]
Baird J M, Walley F L, Shirtliffe S J. Arbuscular mycorrhizal fungi colonization and phosphorus nutrition in organic field pea and lentil. Myrorrhiza, 2010, 20: 541-549.
[34]
Atul-Nayyar A, Hamel C, Hanson K, et al. The arbuscular mycorrhizal symbiosis links N mineralization to plant demand. Myrorrhiza, 2009, 19: 239-246.
[35]
Liu A, Hamel C, Hamilton R I, et al. Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Myrorrhiza, 2000, 9: 331-336.
[36]
Caris C, Hrdt W, Hawkins H J, et al. Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants. Myrorrhiza, 1998, 8: 35-39.
[37]
Neumann E, Schmid B, Rmheld V, et al. Extraradical development and contribution to plant performance of an arbuscular mycorrhizal symbiosis exposed to complete or partial rootzone drying. Myrorrhiza, 2009, 20: 21-23.
[38]
Toussaint J P, Smith F A, Smith S E. Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Myrorrhiza, 2007, 17: 291-297.
[39]
García I V, Mendoza R E. Arbuscular mycorrhizal fungi and plant symbiosis in a saline-sodic soil. Myrorrhiza, 2007, 17: 167-174.
[40]
Mena-Violante H G, Ocampo-Jiménez O, Dendooven L, et al. Arbuscular mycorrhizal fungi enhance fruit growth and quality of chile ancho (Capsicum annuum L. cv San Luis) plants exposed to drought. Myrorrhiza, 2006, 16: 261-267.
[41]
Yu Y, Zhang S Z, Huang H L. Behavior of mercury in a soil-plant syesten as affected by inoculuation with the arbuscular mycorrhizal fungus Glomus mosseae. Myrorrhiza, 2010, 20: 407-414.
[42]
Kamińska M, Klamkowski K, Berniak H, et al. Response of mycorrhizal periwinkle plants to aster yellows phytoplasma infection. Myrorrhiza, 2010, 20: 161-166.
[43]
Elsen A, Gervacio D, Swennen R, et al. AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect. Myrorrhiza, 2008, 18: 251-256.
[44]
Gianinazzi S, Gollotte A, Binet M N, et al. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Myrorrhiza, 2010, 20: 519-530.