全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2013 

疏勒河上游高寒草甸生态系统CO2通量观测研究

DOI: 10.11686/cyxb20130402, PP. 18-26

Keywords: 涡动相关,高寒草甸,气象因子,疏勒河上游

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用涡动相关技术对2009,2010和2011年疏勒河上游高寒草甸生态系统CO2通量观测和分析表明,疏勒河上游高寒草甸生态系统CO2通量具有明显的日变化和年变化特征,6月、7月和8月为CO2的强吸收期,4月、5月和10月为CO2的强释放期。计算得到3年的CO2净吸收量分别为134.5,151.3和194.4gCO2/m2,平均吸收量为160.0gCO2/m2,在区域起着碳汇的作用。生长季节,净生态系统交换量(netecosystemCO2exchange,NEE)与温度、降水量、相对湿度以及地表长波辐射呈负相关,气温在0~7℃范围内NEE随气温增加线性减小,当温度大于7℃时,NEE随温度的增加而增大;非生长季节,NEE与温度、降水量、相对湿度以及地表长波辐射呈正相关。当地表反射率在0.2左右,NEE呈现快速增长趋势,当反射率超过0.3时,NEE接近最大值,并保持稳定。

References

[1]  Schmid H P. Footprint modeling for vegetation atmosphere exchange studies: A review and perspective. Agricultural and Forest Meteorology, 2002, 113: 159-183.
[2]  陈生云, 刘文杰, 叶柏生, 等. 疏勒河上游地区植被物种多样性和生物量及其与环境因子的关系. 草业学报, 2011, 20(3): 70-83. 浏览
[3]  Robert C. EdiRe . (2010-10-13). 浏览
[4]  Lee X, Massman W J, Law B E. Handbook of Micrometeorology: A guide for Surface Flux Measurements. Dordrecht: Kluwer Academic Publishers, 2004: 181-208.
[5]  甄晓杰. 盘锦芦苇湿地参数化方案研究. 北京: 中国气象科学研究院, 2009: 8-14.
[6]  楚良海. 黄土塬区通量数据的质量评价及空间代表性研究. 杨凌: 西北农林科技大学, 2009: 1-48.
[7]  Gilmanov T G, Soussana J F, Aires L, et al. Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis. Agriculture, Ecosystems and Environment, 2007, 121: 93-120.
[8]  Valentini R, Dore S, Marchi G, et al. Carbon and water exchanges of two contrasting central Siberia landscape types: regenerating forest and bog. Functional Ecology, 2000, 14: 87-96.
[9]  Falge E, Baldocchi D, Olson R, et al. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 2001, 107: 43-69.
[10]  Zhu Z L, Sun X M, Wen X F, et al. Study on the processing method of nighttime CO2 eddy covariance flux data in China FLUX. Science in China (Ser. D, Earth Sciences), 2006, 49(Supp.Ⅱ): 36-46.
[11]  Antje M M, Dario P, Markus R, et al. Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agricultural and Forest Meteorology, 2007, 147: 209-232.
[12]  Anita C R, Douglas A F. Diurnal and seasonal patterns in ecosystem CO2 fluxes and their Controls in a temperate grassland. Rangeland Ecology & Management, 2010, 63: 62-71.
[13]  张宪洲, 张谊光, 周允华. 青藏高原4月-10月光合有效量子值的气候学计算. 地理学报, 1997, 52(4): 361-365.
[14]  Sicence Framework and Implementation. Earth System Sicence Partnership(JGBP. Ihdp. DIVERSITAS). Report No.1: Global Carbon Project Report No.1 Canberra, 2003: 22-23.
[15]  Adams J M, Faure H, Faure-Denard L, et al. Increases in terrestrial carbon storage from the glacial maximum to the present. Nature, 1990, 348: 711-714.
[16]  皇甫江云, 毛凤显, 卢欣石. 中国西南地区的草地资源分析. 草业学报, 2012, 21(1): 75-82.
[17]  任继周, 梁天刚, 林慧龙, 等. 草地对全球气候变化的响应及其碳汇潜势研究. 草业学报, 2011, 20(2): 1-22.
[18]  周兴民. 中国嵩草草甸. 北京: 科学出版社, 2001.
[19]  范月君, 侯向阳, 石红霄, 等. 气候变暖对草地生态系统碳循环的影响. 草业学报, 2012, 21(3): 294-302.
[20]  Shi P L, Sun X M, Xu L L, et al. Net ecosystem CO2 exchange and controlling factors in a steppe-Kobresia meadow on the Tibetan Plateau. Science in China(Ser. D, Earth Sciences), 2006, 49(Supp. II): 207-218.
[21]  Kato T, Tang Y H, Gu S, et al. Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai Tibetan Plateau, China. Agricultural and Forest Meteorology, 2004, 124: 121-134.
[22]  李婧梅, 蔡海, 程茜, 等. 青海省三江源地区退化草地蒸散特征. 草业学报, 2012, 21(3): 223-233.
[23]  徐世晓, 赵新全, 李英年, 等. 青藏高原高寒灌丛生长季和非生长季CO2通量分析. 中国科学,2004, 34(增刊Ⅱ): 118-124.
[24]  Baldocchi D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, 2003, 9: 479-492.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133