全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2013 

蒺藜苜蓿耐酸铝性状的全基因组关联分析

DOI: 10.11686/cyxb20130421, PP. 170-178

Keywords: 蒺藜苜蓿,全基因组关联分析,EMMA,基因组选择,岭回归

Full-Text   Cite this paper   Add to My Lib

Abstract:

铝毒害是酸性土壤耕种的主要限制因素,每年造成大量作物减产。蒺藜苜蓿是紫花苜蓿的一年生近缘种,广泛分布于世界各地,是紫花苜蓿遗传改良的重要基因资源。本研究利用蒺藜苜蓿群体的耐酸铝性状差异,进行全基因组关联分析,筛选蒺藜苜蓿耐酸铝性状相关的遗传位点,共得到58个与蒺藜苜蓿耐酸铝性状相关的SNP标记。对其周围基因进行功能注释分析,发现这些SNP位点主要参与苜蓿的细胞壁、脂质代谢、环境胁迫响应过程、氧化还原反应过程以及小分子转运等过程。最后,通过基因组选择方法将发掘SNP标记应用到蒺藜苜蓿耐酸铝性状的预测,预测准确性达到0.80,这说明本研究发掘的SNP标记可以用于蒺藜苜蓿及其近缘物种紫花苜蓿耐酸铝性状的遗传改良。

References

[1]  Delhaize E, Ryan P R. Aluminum toxicity and tolerance in plants. Plant Physiology, 1995, 107(2): 315-321.
[2]  王晓锋, 罗珍, 刘晓燕, 等. 钙磷对酸铝胁迫后紫花苜蓿-根瘤菌体系结瘤固氮的修复效应. 草业学报, 2012, 21(6): 108-116. 浏览
[3]  Sledge M K, Pechter P, Payton M E. Aluminum tolerance in Medicago truncatula germplasm. Crop Science, 2005, 45(5): 2001-2004.
[4]  张芬琴, 于金兰. 铝处理对苜蓿种子萌发及其幼苗生理生化特性的影响. 草业学报, 1999, 8(3): 61-65.
[5]  华卫东, 夏卓盛, 李进军, 等. 紫花苜蓿耐铝的分子基础研究进展. 草业科学, 2008, 25(2): 64-68.
[6]  邱晓, 张兴兴, 闫雯, 等. 二十七个紫花苜蓿品种耐铝性能评价. 上海交通大学学报(农业科学版), 2010, 28: 269-274.
[7]  Cook D R. Medicago truncatula - a model in the making!. Current Opinion in Plant Biology, 1999, 2(4): 301-304.
[8]  Young N D, Udvardi M. Translating Medicago truncatula genomics to crop legumes. Current Opinion in Plant Biology, 2009, 12(2): 193-201.
[9]  Choi H K, Kim D, Uhm T, et al. A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics, 2004, 166(3): 1463-1502.
[10]  The International HapMap Consortium. The international HapMap project. Nature, 2003, 426: 789-796.
[11]  Conrad D F, Jakobsson M, Coop G, et al. A worldwide survey of haplotype variation and linkage disequilibrium in the human genome. Nature Genetics, 2006, 38(11): 1251-1260.
[12]  The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature, 2007, 449: 851-861.
[13]  Kaiser J. A plan to capture human diversity in 1000 genomes. Science, 2008, 319: 395.
[14]  McNally K L, Bruskiewich R, Mackill D, et al. Sequencing multiple and diverse rice varieties. connecting whole-genome variation with phenotypes. Plant Physiology, 2006, 141(1): 26-31.
[15]  McNally K L, Childs K L, Bohnert R, et al. Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proceedings of the National Academy of Sciences USA, 2009, 106(30): 12273-12278.
[16]  Huang X, Wei X, Sang T, et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 2010, 42(11): 961-967.
[17]  Gore M A, Chia J M, Elshire R J, et al. A first-generation haplotype map of maize. Science, 2009, 326: 1115-1117.
[18]  Weigel D, Mott R. The 1001 genomes project for Arabidopsis thaliana. Genome Biology, 2009, 10(5): 107.
[19]  Cao J, Schneeberger K, Ossowski S, et al. Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nature Genetics, 2011, 43(10): 956-963.
[20]  Branca A, Paape T D, Zhou P, et al. Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Proceedings of the National Academy of Sciences USA, 2011, 108(42): E864-E870.
[21]  Brachi B, Faure N, Horton M, et al. Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genetics, 2010, 6(5): e1000940.
[22]  Kang H M, Zaitlen N A, Wade C M, et al. Efficient control of population structure in model organism association mapping. Genetics, 2008, 178(3): 1709-1723.
[23]  Thimm O, Blsing O, Gibon Y, et al. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant Journal, 2004, 37(6): 914-939.
[24]  Endelman J B. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome, 2011, 4(3): 250-255.
[25]  Famoso A N, Zhao K, Clark R T, et al. Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genetics, 2011, 7(8): e1002221.
[26]  Krill A M, Kirst M, Kochian L V, et al. Association and linkage analysis of aluminum tolerance genes in maize. PLoS ONE, 2010, 5(4): e9958.
[27]  Niedziela A, Bednarek P, Cichy H, et al. Aluminum tolerance association mapping in triticale. BMC Genomics, 2012, 13(1): 67.
[28]  甘智才, 陈东颖, 张丽, 等. 转柠檬酸合成酶基因苜蓿耐铝性研究. 中国农业科学, 2010, 43(16): 3461-3466.
[29]  Heslot N, Yang H P, Sorrells M E, et al. Genomic selection in plant breeding: a comparison of models. Crop Science, 2012, 52(1): 146-160.
[30]  Nakaya A, Isobe S N. Will genomic selection be a practical method for plant breeding. Annals of Botany, 2012, 110(6): 1303-1316.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133