Cook D R. Medicago truncatula - a model in the making!. Current Opinion in Plant Biology, 1999, 2(4): 301-304.
[8]
Young N D, Udvardi M. Translating Medicago truncatula genomics to crop legumes. Current Opinion in Plant Biology, 2009, 12(2): 193-201.
[9]
Choi H K, Kim D, Uhm T, et al. A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics, 2004, 166(3): 1463-1502.
[10]
The International HapMap Consortium. The international HapMap project. Nature, 2003, 426: 789-796.
[11]
Conrad D F, Jakobsson M, Coop G, et al. A worldwide survey of haplotype variation and linkage disequilibrium in the human genome. Nature Genetics, 2006, 38(11): 1251-1260.
[12]
The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature, 2007, 449: 851-861.
[13]
Kaiser J. A plan to capture human diversity in 1000 genomes. Science, 2008, 319: 395.
[14]
McNally K L, Bruskiewich R, Mackill D, et al. Sequencing multiple and diverse rice varieties. connecting whole-genome variation with phenotypes. Plant Physiology, 2006, 141(1): 26-31.
[15]
McNally K L, Childs K L, Bohnert R, et al. Genomewide SNP variation reveals relationships among landraces and modern varieties of rice. Proceedings of the National Academy of Sciences USA, 2009, 106(30): 12273-12278.
[16]
Huang X, Wei X, Sang T, et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 2010, 42(11): 961-967.
[17]
Gore M A, Chia J M, Elshire R J, et al. A first-generation haplotype map of maize. Science, 2009, 326: 1115-1117.
[18]
Weigel D, Mott R. The 1001 genomes project for Arabidopsis thaliana. Genome Biology, 2009, 10(5): 107.
[19]
Cao J, Schneeberger K, Ossowski S, et al. Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nature Genetics, 2011, 43(10): 956-963.
[20]
Branca A, Paape T D, Zhou P, et al. Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula. Proceedings of the National Academy of Sciences USA, 2011, 108(42): E864-E870.
[21]
Brachi B, Faure N, Horton M, et al. Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genetics, 2010, 6(5): e1000940.
[22]
Kang H M, Zaitlen N A, Wade C M, et al. Efficient control of population structure in model organism association mapping. Genetics, 2008, 178(3): 1709-1723.
[23]
Thimm O, Blsing O, Gibon Y, et al. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant Journal, 2004, 37(6): 914-939.
[24]
Endelman J B. Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome, 2011, 4(3): 250-255.
[25]
Famoso A N, Zhao K, Clark R T, et al. Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genetics, 2011, 7(8): e1002221.
[26]
Krill A M, Kirst M, Kochian L V, et al. Association and linkage analysis of aluminum tolerance genes in maize. PLoS ONE, 2010, 5(4): e9958.
[27]
Niedziela A, Bednarek P, Cichy H, et al. Aluminum tolerance association mapping in triticale. BMC Genomics, 2012, 13(1): 67.