全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2013 

镉胁迫对长春花生长,生物量及养分积累与分配的影响

DOI: 10.11686/cyxb20130320

Keywords: 镉胁迫,长春花,养分,积累,分配,生物量

Full-Text   Cite this paper   Add to My Lib

Abstract:

长春花是我国广泛栽培兼具园林绿化和抗癌药源等重要价值的多年生草本花卉植物。为了解镉胁迫下长春花的生长适应性和对养分的吸收和利用,采用盆栽试验研究了不同镉处理(0,5,10,25,50,100mg/kg)下长春花生长、生物量及养分(C、N、P和K)积累与分配特征。结果表明,随镉处理浓度的增加,植物各器官镉积累量升高;除叶片P积累量降低外,植物各器官生物量生产及C、N、P和K积累量均表现出先升高后降低的趋势。较高浓度镉处理(≥25mg/kg)明显抑制了长春花的生长特性、生物量生产以及C、N、P和K的积累,显著改变了生物量及其C、N、P和K积累量的分配格局,但相对低浓度的镉处理(≤10mg/kg)并无显著影响。一定程度上,长春花对镉具有较强的耐性,为城市园林绿化和净化重金属污染土壤提供了可能,在镉污染土壤的修复中具有一定的应用潜力。

References

[1]  Wu F Z, Yang W Q, Zhang J, et al. Cadmium accumulation and growth responses of a poplar (Populus deltoids×Populus nigra) in cadmium contaminated purple soil and alluvial soil. Journal of Hazardous Materials, 2010, 177: 268-273.
[2]  马学文, 翁焕新, 章金骏. 中国城市污泥重金属和养分的区域特性及变化. 中国环境科学, 2011, 31(8): 1306-1313.
[3]  Nedjimi B, Daoud Y. Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora-Morphology, Distribution, Functional Ecology of Plants, 2009, 204: 316-324.
[4]  吴福忠, 杨万勤, 张健, 等. 镉胁迫对桂花生长和养分积累、分配与利用的影响. 植物生态学报, 2010, 34(10): 1220-1226.
[5]  Vitousek P M, Porder S, Houlton B Z, et al. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 2010, 20: 5-15.
[6]  Güsewell S. N∶P ratios in terrestrial plants: variation and functional significance. New Phytologist, 2004, 164: 243-266.
[7]  Cakmak I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science, 2005, 168: 521-530.
[8]  刘俊祥, 孙振元, 勾萍, 等. 镉胁迫下多年生黑麦草的光合生理响应. 草业学报, 2012, 21(3): 191-197. 浏览
[9]  刘碧英, 潘远智, 赵杨迪, 等. 藿香蓟(Ageratum conyzoides)对土壤铅胁迫的生理响应. 应用与环境生物学报, 2011, 17(5): 651-655.
[10]  祖元刚, 王非, 马书荣, 等. 长春花生活史型研究. 北京: 科学出版社, 2006.
[11]  Zhang H, Hedhili S, Montiel G, et al. The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus. The Plant Journal, 2011, 67: 61-71.
[12]  Olivia G, Audrey O, Grégory G. A type-B response regulator drives the expression of the hydroxymethylbutenyl diphosphate synthase gene in periwinkle. Journal of Plant Physiology, 2012, 169: 1571-1574.
[13]  鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
[14]  Mukherjee S K, Asanuma S. Possible role of cellular phosphate pool and subsequent accumulation of inorganic phosphate on the aluminum tolerance in Bradyrhizobium japonicum. Soil Biology & Biochemistry, 1998, 30: 1511-1156.
[15]  Hernández L E, Gárate A, Carpena-Ruiz R. Effects of cadmium on the uptake, distribution and assimilation of nitrate in Pisum sativum. Plant and Soil, 1997, 189: 97-106.
[16]  中国标准出版社. 中华人民共和国国家标准: 食品卫生检验方法·理化部分(1). 北京: 中国标准出版社, 2012.
[17]  刘碧英, 潘远智, 赵杨迪, 等. Pb胁迫对藿香蓟(Ageratum conyzoides)营养积累与分配的影响. 农业环境科学学报, 2011, 30(3): 435-442.
[18]  宝乐, 刘艳红. 东灵山地区不同森林群落叶功能性状比较. 生态学报, 2009, 29(7): 3692-3703.
[19]  赵杨迪, 潘远智, 刘碧英, 等. Cd、Pb单一及复合污染对花叶冷水花生长的影响及其积累特性研究. 农业环境科学学报, 2012, 31(1): 48-53.
[20]  Benavides M, Gallego S, Tomaro M. Cadmium toxicity in plants. Brazilian Journal of Plant Physiology, 2005, 17(1): 21-34.
[21]  樊瑞苹,周琴, 周波, 等. 盐胁迫对高羊茅生长及抗氧化系统的影响. 草业学报, 2012, 21(1): 112-117. 浏览
[22]  Gonzaga M I S, Santos J A G, Ma L Q, et al. Phytoextraction by arsenic hyperaccumulator Pteris vittata L. from six arsenic-contaminated soils: Repeated harvests and arsenic redistribution. Environmental Pollution, 2008, 154: 212-218.
[23]  田小霞, 孟林, 毛培春, 等. 重金属Cd、Zn对长穗偃麦草生理生化特性的影响及其积累能力研究. 农业环境科学学报, 2012, 31(8): 1483-1490.
[24]  张树金, 李廷轩, 邹同静, 等. 铅锌尾矿区优势草本植物体内铅及氮、磷、钾含量变化特征. 草业学报, 2012, 21(1): 162-169. 浏览
[25]  燕傲蕾, 吴亭亭, 王友保, 等. 三种观赏植物对重金属镉的耐性与积累特性. 生态学报, 2010, 30(9): 2491-2498.
[26]  Zurayk R, Sukkariyah B, Baalbaki R. Common hydrophytesas bioindicators of nickel, chromium and cadmium pollution. Water, Air, & Soil Pollution, 2001, 127: 373-388.
[27]  Hirel B, Andrieu B, Valadier M H, et al. Physiology of maize II. Identification of physiological markers representative of the nitrogen status of maize (Zea mays) leaves during grain filling. Physiologia Plantarum, 2005, 124: 178-188.
[28]  Mojiri A. The potential of corn (Zea mays) for phytoremediation of soil contaminated with cadmium and lead. Journal of Biological and Environmental Science, 2011, 5: 17-22.
[29]  Broadley M R, Escobar-Gutiérrez A J, Burns A. What are the effects of nitrogen deficiency on growth components of lettuce?. New Phytologist, 2000, 147: 519-526.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133