全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2013 

梅山与长白母猪粪样微生物体外发酵八种纤维底物的特性比较

DOI: 10.11686/cyxb20130313

Keywords: 梅山母猪,长白母猪,纤维降解菌,16SrRNA基因

Full-Text   Cite this paper   Add to My Lib

Abstract:

本研究旨在比较不同品种母猪(梅山猪与长白猪)粪样中微生物对不同纤维底物的体外降解能力,同时分析粪样中的主要纤维降解菌数量。采集梅山(n=5)和长白(n=5)母猪新鲜粪样作为发酵接种物,以果胶、纤维素、菊粉、麦壳、麸皮、木聚糖、玉米芯渣及苜蓿作为纤维底物进行体外发酵,测定产气量和发酵液挥发性脂肪酸(volatilefattyacid,VFA)浓度。粪样同时用于提取细菌总核酸,变性梯度凝胶电泳(denaturinggradientgelelectrophoresis,DGGE)和real-timePCR对菌群区系进行分析。体外发酵结果表明,从发酵后9h至96h结束,长白猪接种物各组的累积产气量、有机物校正产气量分别显著(P<0.05)和极显著(P<0.01)高于梅山猪,长白猪T1/2和Tmax显著低于梅山猪(P<0.05),且发酵终产物中乙酸和总VFA浓度显著高于梅山猪接种物(P<0.05),整个发酵过程中不同底物间累积产气量差异显著(P<0.05),累积产气量从高到低的组别依次为:菊粉>麸皮>果胶>苜蓿>麦壳>玉米芯渣>木聚糖>纤维素。DGGE分析表明,梅山与长白母猪粪样菌群图谱中存在许多共同条带。Real-timePCR定量分析表明,梅山母猪粪样中的总细菌的16SrRNA基因拷贝数显著高于长白母猪(P<0.05),而拟杆菌、产琥珀酸丝状杆菌、黄化瘤胃球菌和白化瘤胃球菌等纤维降解菌数量及其占总菌比例差异均不显著(P>0.05)。结果显示,尽管2个品种母猪粪样中纤维降解菌数量无显著差异,但是长白母猪粪样微生物体外发酵纤维底物的能力高于梅山母猪。

References

[1]  Lee P, Close W H. Bulky feeds for pigs: A consideration of some non-nutritional aspects. Livestock Production Science, 1987, 16: 395-405.
[2]  Matte J J, Robert S, Girard C L, et al. Effect of bulky diets based on wheat bran or oat hulls on reproductive performance of sows during their first two parities. Journal of Animal Science, 1994, 72: 1754-1760.
[3]  Shim S B, Verdonk J M A J, Pellikaan W F, et al. Differences in microbial activities of faeces from weaned and unweaned pigs in relation to in vitro fermentation of different sources of inulin-type oligofructose and pig feed ingredients. Asian-Australian Journal of Animal Science, 2007, 20: 1444-1452.
[4]  Kemp B, den Hartog L A, Klok J J, et al. The digestibility of nutrients, energy and nitrogen in the Meishan and Dutch Landrace pig. The Journal of Animal Physiology and Nutrition, 1990, 65: 263-266.
[5]  Yen J T, Varel V H, Nienaber J A. Metabolic and microbial responses in western crossbred and Meishan growing pigs fed a high-fiber diet. Journal of Animal Science, 2004, 82: 1740-1755.
[6]  Ives C S, Sergio L S, Cabral Filho, et al. Influence of inoculum source in a gas production method. Animal Feed Science and Technology, 2005, 123-124: 95-105.
[7]  于卓腾. 大豆黄酮对仔猪肠道微生物的影响和雌马酚产生菌的分离及其特性的研究. 南京: 南京农业大学, 2007.
[8]  Su Y, Yao W, Perez O, et al. Increased abundance of Lactobacillus spp. and Streptococcus suis in stomach, jejunum and ileum of piglets after weaning. FEMS Microbiology Ecology, 2008, 66: 546-555.
[9]  Menke K H, Rabb L, Salewski A, et al. The estimation of the digestibility and metabolisable energy content of ruminant feedstuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science (Cambridge), 1979, 93: 217-222.
[10]  张丽英. 饲料分析及饲料质量检测技术(第2版). 北京:中国农业大学出版社, 2003.
[11]  Theodorou M K, Williams B A, Dhanoa M S, et al. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology, 1994, 48: 185-197.
[12]  崔占鸿, 郝力壮, 刘书杰, 等. 体外产气法评价青海高原燕麦青干草与天然牧草组合效应. 草业学报, 2012, 21(3): 250-257. 浏览
[13]  Groot J C, Cone J W, Williams B A, et al. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Animal Feed Science and Technology, 1996, 64: 77-89.
[14]  王新峰, 毛胜勇, 朱伟云. 绞股蓝皂甙对体外瘤胃微生物甲烷产量及发酵特性的影响. 草业学报, 2011, 20(2): 52-59. 浏览
[15]  Zoetendal E G, Akkermans A D L, de Vos W M. Temperature gradient gel electrophoresis analysis from human fecal samples reveals stable and host specific communities of active bacteria. Applied Environmental Microbiology, 1998, 64: 3854-3859.
[16]  Nübel U, Engelen B, Felske A, et al. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. Journal of Bacteriology, 1996, 178: 5636-5643.
[17]  Konstantinov S R, Zhu W Y, Williams B A, et al. Effect of fermentable carbohydrates on piglet facial bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. FEMS Microbiology Ecology, 2003, 43: 225-235.
[18]  Suzuki M T, Beja O, Taylor L T, et al. Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Applied Environmental Microbiology, 2000, 66: 4605-4614.
[19]  Guo X, Xia X, Tang R, et al. Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Letters in Applied Microbiology, 2008, 47: 367-373.
[20]  Denman S E, McSweeney C S. Developmentofa real-timePCR assay formonitoring anaerobic fungal and cellulolytic bacterial populationswithin the rumen. FEMS Microbiology Ecology, 2006, 58: 562-572.
[21]  赵玉华. 瘤胃微生物real-time PCR定量方法的建立及其应用. 北京: 中国农业科学院, 2005.
[22]  Van Soest P J. Nutritional Ecology of the Ruminant(2nd ed.). Ithaca, NY: Cornell University Press, 1994.
[23]  Sunvold G D, Hussein H S, Fahey G C, et al. In vitro fermentation of cellulose, beet pulp, citrus pulp and citrus pectin using fecal inoculum from cats, dogs, horses, humans, and pigs and ruminal fluid from cattle. Journal of Animal Science, 1995, 73: 3639-3648.
[24]  Awati A, Williams B A, Bosch M W, et al. Use of the in vitro cumulative gas production technique for pigs: An examination of alterations in fermentation products and substrate losses at various time points. Journal of Animal Science, 2006, 84: 1110-1118.
[25]  Schneider S M, Fernand G P, Rodolphe A, et al. Effects of total enteral nutrition supplemented with a multi-fibre mix on faecal short chain fatty acids and microbiota. Clinic Nutrition, 2006, 25: 82-90.
[26]  Tims S, Zoetendal E J, de Vos W M, et al. Host genotype and the effect on microbial communities In: Nelson K E. Metagenomics of the Human Body. New York: Springer Science&Business Media, 2011: 15-41.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133