全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2013 

草原碳汇管理对策

, PP. 290-299

Keywords: 草地管理,气候变化,草地利用方式,土壤有机质

Full-Text   Cite this paper   Add to My Lib

Abstract:

我国约4亿hm2草原,草原具有强大碳汇功能,但人们对草原碳汇管理的认识和研究还不足。综述了CO2、温度及降雨等气象因子和草原开垦、放牧、割草、施肥、人工草地建植等草地管理措施对草原碳汇功能的影响及其作用机制,以期对我国草原管理实践提供借鉴。温度和降雨的改变对不同类型草原的碳汇功能影响不同,以碳汇为目标的草地管理,必须综合考虑气候变化对碳固持的影响。草地退化生产力下降,土壤理化环境恶化,土壤有机碳含量降低,退化草地具有较大的固碳潜力,采用合理的草原管理措施能够极大的提高草地有机碳含量,据估算全国重度退化草地如果全面实施围栏封育措施,固碳潜力每年达12.01TgC。过度放牧改变了草原植被群落结构,降低净初级生产力,C∶N增加,土壤氮的亏缺限制碳的固持,枯落物的量也降低,减少有机质的形成,草原碳汇功能降低。合理放牧管理增强草原碳汇功能。草原开垦减少枯落物的输入增加了土壤侵蚀,使土壤有机质暴露在空气中,土壤有机质的氧化分解加快,降低土壤有机质含量。高强度的刈割利用不利于草地碳汇,刈割利用要选择合适的刈割时间和刈割高度,并通过粪尿或施肥等管理措施,返还割草地损失的营养物质。施肥、补播、耕翻和灌溉等改良措施促进草原植被更新,提高草原生产力,增强草原固碳能力。农田弃耕和围封禁牧增强草地碳汇功能,配合施肥补播等其他管理措施,可以促进植被恢复,提高其固碳效率。退耕还草增加草原碳汇,牧草固碳能力强弱为:豆禾混播>多年生豆科牧草>多年生禾本科牧草>一年生禾草。

References

[1]  Houghton R A. Balancing the global carbon budget. Annual Review of Earth and Planetary Sciences, 2007, 35: 313-347.
[2]  Piao S L, Fang J Y, Ciais P, et al. The carbon balance of terrestrial ecosystems in China. Nature, 2009, 458: 1009-1014.
[3]  Schuman G E, Janzen H H, Herrick J E. Soil carbon dynamics and potential carbon sequestration by rangelands. Environmental Pollution, 2002, 116: 391-396.
[4]  Ni J. Carbon storage in grasslands of China. Journal of Arid Environments, 2002, 50: 205-218.
[5]  Lu Y, Zhuang Q, Zhou G, et al. Possible decline of the carbon sink in the Mongolian Plateau during the 21st century. Environmental Research Letters, 2009, 4: 1-8.
[6]  Liebig M A, Gross J R, Kronberg S L, et al. Grazing management contributions to net global warming potential: a long-term evaluation in the Northern Great Plains. Journal of Environmental Quality, 2010, 39: 799-809.
[7]  Wang S, Wilkes A, Zhang Z, et al. Management and land use change effects on soil carbon in northern China’s grasslands: a synthesis. Agriculture, Ecosystems & Environment, 2011, 142: 329-340.
[8]  任继周, 梁天刚, 林慧龙, 等. 草地对全球气候变化的响应及其碳汇潜势研究. 草业学报, 2011, 20: 1-22. 浏览
[9]  Bai Y F, Han X G, Wu J G, et al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 2004, 431: 181-184.
[10]  Lesica P, Kittelson P M. Precipitation and temperature are associated with advanced flowering phenology in a semi-arid grassland. Journal of Arid Environments, 2010, 74: 1013-1017.
[11]  Hao Y B, Wang Y F, Cui X Y. Drought stress reduces the carbon accumulation of the Leymus chinensis steppe in Inner Mongolia, China. Chinese Journal of Plant Ecology, 2010, 34: 898-906.
[12]  Yang Y H, Fang J Y, Tang Y H, et al. Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology, 2008, 14: 1592-1599.
[13]  Li L H, Bai W M, Wan S Q, et al. Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling. Global Change Biology, 2010, 16: 1306-1316.
[14]  Yu H, Luedeling E, Xu J. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences, 2010, 107: 22151-22156.
[15]  Wu J G, Ai L, Chang W. Soil organic carbon mineralization and its affecting factors under four typical vegetation sinmid Qilian Mounatins. Chinese Journal of Ecology, 2007, 26: 1703-1711.
[16]  吴永胜, 马万里, 李浩, 等. 内蒙古退化荒漠草原土壤有机碳和微生物生物量碳含量的季节变化. 应用生态学报, 2010, 21: 312-316.
[17]  赵锦梅. 祁连山东段不同退化程度高寒草地土壤有机碳储量的研究. 兰州: 甘肃农业大学, 2006.
[18]  王文颖, 王启基, 王刚. 高寒草甸土地退化及其恢复重建对土壤碳氮含量的影响. 生态环境, 2006, 15: 362-366.
[19]  樊恒文, 贾晓红, 张景光, 等. 干旱区土地退化与荒漠化对土壤碳循环的影响. 中国沙漠, 2002, 6: 525-533.
[20]  祝列克. 中国荒漠化和沙化动态研究. 北京: 中国农业出版社, 2006.
[21]  Wu T Y, Jeff J S, Li F M, et al. Influence of cultivation on organic carbon in three typical soils of China Loess Plateau and Canada Prairies. Chinese Journal of Applied Ecology, 2003, 14: 2213-2218.
[22]  Yan Y C, Tang H P, Chang R Y, et al. Variation of belowground carbon sequestration under long term cultivation and grazing in the typical steppe of nei Monggol in North China. Environmental Science, 2008, 29: 1388-1393.
[23]  许中旗, 赵盼茹, 王英舜, 等. 人为干扰对典型草原土壤侵蚀影响的价值评价. 中国草地学报, 2007, 29: 1-6.
[24]  Post W M, Kwon K C. Soil carbon sequestration and land-use change: processes and potential. Global Change Biology, 2000, 6: 317-327.
[25]  Ciais P, Bousquet P, Freibauer A, et al. Horizontal displacement of carbon associated with agriculture and its impacts on atmospheric CO2. Global Biogeochemical Cycles, 2007, 21.
[26]  Luo Z K, Wang E L, Sun O J. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agriculture, Ecosystems & Environment, 2010, 139: 224-231.
[27]  Pineiro G, Paruelo J M, Oesterheld M, et al. Pathways of grazing effects on soil organic carbon and nitrogen. Rangeland Ecology & Management, 2010, 63: 109-119.
[28]  Derner J D, Boutton T W, Briske D D. Grazing and ecosystem carbon storage in the North American Great Plains. Plant and Soil, 2006, 280: 77-90.
[29]  Wang M J, Han G D, Zhao M L, et al. The effects of different grazing intensity on soil organic carbon content in meadow steppe. Patacultural Science, 2007, 24: 6-10.
[30]  Bagchi S, Ritchie M E. Introduced grazers can restrict potential soil carbon sequestration through impacts on plant community composition. Ecology Letters, 2010, 13: 959-968.
[31]  Li L H, Liu X H, Chen Z Z. Study on the carbon cycle of Leymus chinensis steppe in the Xilin river basin. Acta Botanica Sinica, 1998, 40: 955-961.
[32]  Li L H, Li X, Bai W M, et al. Soil carbon budget of a grazed Leymus chinensis steppe community in the Xilin river basin of Inner Mongolia. Acta Phytoecologica Sinica, 2004, 28: 312-317.
[33]  王国成, 张稳, 黄耀. 1981-2001年内蒙古草地净初级生产力时空变化特征. 草业科学, 2011, 28: 2016-2025.
[34]  Reeder J D, Schuman G E. Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands. Environmental Pollution, 2002, 116: 457-463.
[35]  Martinsen V, Mulder J, Austrheim G, et al. Carbon storage in low-alpine grassland soils: effects of different grazing intensities of sheep. European Journal of Soil Science, 2011, 62: 822-833.
[36]  李凌浩. 土地利用变化对草原生态系统土壤碳贮量的影响. 植物生态学报, 1998, 22: 300-302.
[37]  Rutledge S, Campbell D I, Baldocchi D, et al. Photodegradation leads to increased carbon dioxide losses from terrestrial organic matter. Global Change Biology, 2010, 16: 3065-3074.
[38]  王国良. 内蒙古高原南缘草甸草原可持续利用研究.北京: 中国农业科学院, 2007.
[39]  Franzluebbers A J, Stuedemann J A. Soil-profile organic carbon and total nitrogen during 12 years of pasture management in the Southern Piedmont USA. Agriculture Ecosystems & Environment, 2009, 129: 28-36.
[40]  Zhou Z Y, Sun O J, Huang J H, et al. Soil carbon and nitrogen stores and storage potential as affected by land-use in an agro-pastoral ecotone of northern China. Biogeochemistry, 2007, 82: 127-138.
[41]  宁发, 徐柱, 单贵莲. 干扰方式对典型草原土壤理化性质的影响. 中国草地学报, 2008, 30: 46-50.
[42]  单贵莲, 徐柱, 宁发, 等. 围封年限对典型草原植被与土壤特征的影响. 草业学报, 2009, 18: 3-10. 浏览
[43]  郭然, 王效科, 逯非, 等. 中国草地土壤生态系统固碳现状和潜力. 生态学报, 2008, 28: 862-867.
[44]  Wu L, He N, Wang Y, et al. Storage and dynamics of carbon and nitrogen in soil after grazing exclusion in Leymus chinensis grasslands of northern China. Journal of Environmental Quality, 2008, 37: 663-668.
[45]  张洪生, 邵新庆, 刘贵河, 等. 围封、浅耕翻改良技术对退化羊草草地植被恢复的影响. 草地学报, 2010, 18: 339-344.
[46]  董晓玉, 傅华, 李旭东, 等. 放牧与围封对黄土高原典型草原植物生物量及其碳氮磷贮量的影响. 草业学报, 2010, 19: 175-182. 浏览
[47]  Qu W L, Pei S F, Zhou Z G, et al. Influences of overgrazing and exclosure on carbon of soils and characteristics of vegetation in desert steppe, Inner Mongolia, North China. Journal of Gansu Forestry Science and Techndogy, 2004, 29: 4-6.
[48]  曹成有, 邵建飞, 蒋德明, 等. 围栏封育对重度退化草地土壤养分和生物活性的影响. 东北大学学报(自然科学版), 2011, 32: 427-430.
[49]  Pineiro G, Paruelo J M, Jobbagy E G, et al. Grazing effects on belowground C and N stocks along a network of cattle exclosures in temperate and subtropical grasslands of South America. Global Biogeochemical Cycles, 2009, 23.
[50]  Kiehl K. Plant species introduction in ecological restoration: possibilities and limitations. Basic and Applied Ecology, 2010, 11: 281-284.
[51]  Conant R T, Paustian K, Elliott E T. Grassland management and conversion into grassland: Effects on soil carbon. Ecological Applications, 2001, 11: 343-355.
[52]  石锋, 李玉娥, 高清竹, 等. 管理措施对我国草地土壤有机碳的影响. 草业科学, 2009, 26: 9-15.
[53]  Wang X Y, Willms W D, Hao X Y, et al. Cultivation and reseeding effects on soil organic matter in the mixed prairie. Soil Science Society of America Journal, 2010, 74: 1348-1355.
[54]  张伟华, 关世英, 李跃进, 等. 不同恢复措施对退化草地土壤水分和养分的影响. 内蒙古农业大学学报, 2000, 21: 31-35.
[55]  Whitmore A P, Bradbury N J, Johnson P A. Potential contribution of plowed grassland to nitrate leaching. Agriculture, Ecosystems & Environment, 1992, 39: 221-233.
[56]  Vellinga T V, van den Pol-van Dasselaar A, Kuikman P J. The impact of grassland ploughing on CO2 and N2O emissions in the Netherlands. Nutrient Cycling in Agroecosystems, 2004, 70: 33-45.
[57]  孙庚, 吴宁, 罗鹏. 不同管理措施对川西北草地土壤氮和碳特征的影响. 植物生态学报, 2005, 29: 304-310.
[58]  蒋德明, 贺山峰, 曹成有, 等. 翻耙补播对科尔沁碱化草地土壤理化性质和生物活性的影响. 中国草地学报, 2006, 4: 18-23.
[59]  李彦军, 姚桂荣, 郭立光. 重耙、补播几种牧草改良重度盐碱化草地的当年效果调查. 内蒙古草业, 2010, 1: 17-18.
[60]  O’Brien S L, Jastrow J D, Grimley D A, et al. Moisture and vegetation controls on decadal-scale accrual of soil organic carbon and total nitrogen in restored grasslands. Global Change Biology, 2010, 16: 2573-2588.
[61]  高天明, 张瑞强, 刘铁军, 等. 不同灌溉量对退化草地的生态恢复作用. 中国水利, 2011, 9: 20-23.
[62]  Gao Z C, Chi F Q, Zhao Q. Effects of fertilization on the plant community yield and soil properties of deteriorated grassland. Grassland and Turf, 2007, 2: 60-62.
[63]  Zhou G Y, Chen G S, Zhao Y L, et al. Comparative research on the influence of chemical fertilizer application and enclosure on alpine steppes in the Qinghai Lake area:1 Structure and species diversity of the plant community. Patacultural Science, 2004, 13: 26-31.
[64]  De Deyn G B, Shiel R S, Ostle N J, et al. Additional carbon sequestration benefits of grassland diversity restoration. Journal of Applied Ecology, 2011, 48: 600-608.
[65]  Liebig M A, Gross J, Kronberg S L, et al. Soil response to long-term grazing in the northern Great Plains of North America. Agriculture Ecosystems & Environment, 2006, 115: 270-276.
[66]  van Kessel C, Boots B, de Graaff M A, et al. Total soil C and N sequestration in a grassland following 10 years of free air CO2 enrichment. Global Change Biology, 2006, 12: 2187-2199.
[67]  郑海霞, 齐莎, 赵小蓉, 等. 连续5年施用氮肥和羊粪的内蒙古羊草 (Leymus chinensis) 草原土壤颗粒状有机质特征. 中国农业科学, 2008, 41: 1083-1088.
[68]  姚骅, 陆建华, 蔡立群, 等. 玛曲退化草地主要植被特征对不同施肥处理的响应. 甘肃农业大学学报, 2009, 44: 127-131.
[69]  杜峰, 梁宗锁, 徐学选, 等. 陕北黄土丘陵区撂荒草地群落生物量及植被土壤养分效应. 生态学报, 2007, 27: 1673-1683.
[70]  王俊明, 张兴昌. 退耕草地演替过程中的碳储量变化. 草业学报, 2009, 18(1): 1-8.
[71]  田洪艳, 周道玮, 郭平. 不同撂荒年限的草原农田土壤及植被的变化规律研究. 东北师大学报(自然科学版), 2001, 33: 6.
[72]  张平良, 李小刚, 李银科, 等. 高寒农牧交错带植被恢复对土壤有机碳、全氮含量的影响. 甘肃农业大学学报, 2007, 42: 98-102.
[73]  Potter K N, Torbert H A, Johnson H B, et al. Carbon storage after long-term grass establishment on degraded soils. Soil Science, 1999, 164: 718-725.
[74]  郭艳玲, 韩建国. 北方农牧交错带几种禾本科牧草对土壤有机质的影响. 内蒙古草业, 2006, 18: 7-9.
[75]  邰继承, 张宏宇, 杨恒山, 等. 播种方式对紫花苜蓿+无芒雀麦人工草地土壤剖面养分分布的影响. 内蒙古民族大学学报(自然科学版), 2009, 24: 392-396.
[76]  张仁平, 于磊, 鲁为华, 等. 混播草地地上生物量与土壤主要养分变化的关系研究. 新疆农业科学, 2009, 46: 592-596.
[77]  Ma Z, Wood C W, Bransby D I. Soil management impacts on soil carbon sequestration by switchgrass. Biomass & Bioenergy, 2000, 18: 469-477.
[78]  展争艳, 李小刚, 张德罡, 等. 利用方式对高寒牧区土壤有机碳含量及土壤结构性质的影响. 土壤学报, 2005, 42: 777-782.
[79]  张法伟, 李英年, 汪诗平, 等. 青藏高原高寒草甸土壤有机质、全氮和全磷含量对不同土地利用格局的响应. 中国农业气象, 2009, 3: 323-326.
[80]  侯向阳, 尹燕亭, 丁勇. 中国草原适应性管理研究现状与展望. 草业学报, 2011, 20(2): 262-269. 浏览
[81]  Reich P B. Elevated CO2 reduces losses of plant diversity caused by nitrogen deposition. Science, 2009, 326: 1399-1402.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133