全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2013 

罗勒对海水胁迫的生理响应

, PP. 219-226

Keywords: 罗勒,海水,离子平衡,渗透调节

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用网室盆栽实验,研究了不同浓度海水(0,5%,10%,20%,30%和40%)处理下罗勒生长及生理特性的响应特征。结果表明,海水胁迫显著降低罗勒植株生长速率及地上部干物质积累量,而根系在30%海水处理下基本不受影响。高盐(30%和40%)处理显著促进罗勒植株可溶性糖和脯氨酸的积累、提高其叶片水分利用效率,但光合作用受到不同程度的抑制,光合速率的降低主要是由气孔因素所引起。海水胁迫下植株大量吸收Na+的同时伴随根系或茎部K+和Ca2+含量的显著降低,而叶片K+、Ca2+含量维持不变或显著增加。盐胁迫植株体内57.1%~64.6%的Na+积累在根系,而超过50%的K+和Ca2+分布在叶片中。海水胁迫明显降低罗勒植株K+/Na+和Ca2+/Na+,但所有盐处理的植株均维持较高的叶片K+/Na+和Ca2+/Na+,40%海水处理的叶片K+/Na+值仍高于3。研究结果表明,罗勒通过将Na+主要区隔于根系并维持叶片K+/Na+或Ca2+/Na+的稳定,以及在高盐环境下积累可溶性糖和脯氨酸进行渗透调节来适应不同浓度的海水胁迫。

References

[1]  Lv S L, Jiang P, Chen X Y, et al. Multiple compartmentalization of sodium conferred salt tolerance in Salicornia europaea. Plant Physiology and Biochemistry, 2012, 51: 47-152.
[2]  FAO. Global network on integrated soil management for sustainable use of salt-affected soils. Food and Agriculture Organization of the United Nations, Land and Plant Nutrition Management Service, Rome, 2005. 浏览
[3]  景艳霞, 袁庆华. NaCl胁迫对苜蓿幼苗生长及不同器官中盐离子分布的影响. 草业学报, 2011, 20(2): 134-139. 浏览
[4]  刘爱荣, 张远兵, 方园园, 等. 盐胁迫对金盏菊生长、抗氧化能力和盐胁迫蛋白的影响. 草业学报, 2011, 20(6): 52-59. 浏览
[5]  Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes. Annal Review of Plant Physiology, 1980, 31: 149-190.
[6]  Parida A K, Das A B. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 2005, 60: 324-349.
[7]  李洪燕, 郑青松, 姜超强, 等. 籽粒苋幼苗对不同盐离子胁迫响应的比较研究.草业学报, 2010, 19(5): 63-70. 浏览
[8]  杜利霞, 董宽虎, 杨桂英, 等. 不同盐碱化草地对披碱草光合生理特性的影响. 草业学报, 2011, 20(5): 49-56. 浏览
[9]  Sekmen A H, Turkan I, Tanyolac Z O, et al. Different antioxidant defense responses to salt stress during germination and vegetative stages of endemic halophyte Gypsophila oblanceolata Bark. Environmental and Experimental Botany, 2012, 77: 63-76.
[10]  Zhu J K. Regulation of ion homeostasis under salt stress. Current opinion in Plant Biology, 2003, 6: 441-445.
[11]  毛才良, 刘友良. 盐胁迫大麦苗体内的 Na+、K+分配与叶片耐盐量. 南京农业大学学报, 1990, 13(3): 32-36.
[12]  Wang S M, Zheng W J, Ren J Z, et al. Selectivity of various types of salt-resistant plants for K+ over Na+. Journal of Arid Environments, 2002, 52: 457-472.
[13]  王龙强, 米永伟, 蔺海明. 盐胁迫对枸杞属两种植物幼苗离子吸收和分配的影响. 草业学报, 2011, 20(4): 129-136. 浏览
[14]  Munns R.Comparative physiology of salt and water stress. Plant Cell Environment, 2002, 25: 239-250.
[15]  Ashraf M. Some important physiological selection criteria for salt tolerance in plants. Flora, 2004, 199: 361-376.
[16]  中国科学院中国植物志编辑委员会.中国植物志(第六十六卷). 北京: 科学出版社, 2004: 561. 浏览
[17]  Blank A F, Rosa Y R S, de Carvalho F J L S, et al. A diallel study of yield components and essential oil constituents in basil (Ocimum basilicum L.). Industrial Crops and Products, 2012, 38: 93-98.
[18]  Tarchoune I, Sgherri C, Izzo R, et al. Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization. Plant Physiology and Biochemistry, 2010, 48: 772-777.
[19]  Zheljazkov V D, Cantrell C L, Ebelhar M W, et al. Productivity, oil content, and oil composition of sweet basil as a function of nitrogen and sulfur fertilization. Hortscience, 2008, 43: 1415-1422.
[20]  Chalchat J C, zcan M M. Comparative essential oil composition of flowers, leaves and stems of basil (Ocimum basilicum L.) used as herb. Food Chemistry, 2008,110: 501-503.
[21]  Telci I, Bayram E, Yilmaz G, et al. Variability in essential oil composition of Turkish basils (Ocimum basilicum L.). Biochemical Systematics and Ecology, 2006, 34: 489-497.
[22]  Courrèges M C, Benencia F. In vitro antiphagocytic effect of basil oil on mouse macrophages. Fitoterapia, 2002,7: 369-374.
[23]  郑青松, 刘兆普, 刘友良, 等. 等渗的盐分和水分胁迫对芦荟幼苗生长和离子分布的效应. 植物生态学报, 2004, 28: 823-827.
[24]  李合生. 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000: 195-197, 258-260.
[25]  Leyva R, Sánchez-Rodríguez E, Ríos J J, et al. Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Science, 2011,181: 195-202.
[26]  杨志莹, 赵兰勇, 徐宗大. 盐胁迫对玫瑰生长和生理特性的影响. 应用生态学报, 2011, 22(8): 1993-1998.
[27]  Attia H, Karray N, Ellili A, et al. Sodium transport in basil. Acta Physiologiae Plantarum, 2009, 31: 1045-1051.
[28]  杨淑萍, 危常州, 梁永超. 盐胁迫对不同基因型海岛棉光合作用及荧光特性的影响. 中国农业科学, 2010, 43(8): 1585-1593.
[29]  El Sayed A H E S. Influence of salinity (NaCl and Na2SO4) treatments on growth development of Broad Bean (Vicia faba L.) plant. American-Eurasian Journal of Agricutural & Environmental Science, 2011, 10(4): 600-610.
[30]  Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 1982, 33: 317-345.
[31]  Attia H, Ouhibi C, Ellili A, et al. Analysis of salinity effects on basil leaf surface area, photosynthetic activity, and growth. Acta Physiologiae Plantarum, 2011, 33: 823-833.
[32]  da Silva E C, Nogueira R J M C, de Araújo F P, et al. Physiological responses to salt stress in young umbu plants. Environmental and Experimental Botany, 2008, 63: 147-157.
[33]  Koyro H W. Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte. Environmental and Experimental Botany, 2006, 56: 136-146.
[34]  Degl’Innocenti E, Hafsi C, Guidi L, et al. The effect of salinity on photosynthetic activity in potassium-deficient barley species. Journal of Plant Physiology, 2009, 166: 1968-1981.
[35]  Neocleous D, Vasilakakis M. Effects of NaCl stress on red raspberry (Rubus idaeus L. ‘Autumn Bliss’). Scientia Horticulturae, 2007,112: 282-289.
[36]  Cheeseman J M. Mechanism of salinity tolerance in plants. Plant Physiology, 1988, 87: 547-550.
[37]  Cuin T A, Miller A J, Laurie S A, et al. Potassium activities in cell compartments of salt-grown barley leaves. Journal of Experiment Botany, 2003, 54: 657-661.
[38]  Zheng Y H, Jia A J, Ning T Y, et al. Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance. Journal of Plant Physiology, 2008, 165: 1455-1465.
[39]  Wyn Jones R G. Salt tolerance. In: Johnson C B, editor. Physiological Processes Limiting Plant Productivity. London: Butterworths, 1981: 271-292.
[40]  Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 2007,59: 206-216.
[41]  Demiral T, Türkan I. Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. Environmental and Experimental Botany, 2006, 56: 72-79.
[42]  Dong C J, Wang X L, Shang Q M. Salicylic acid regulates sugar metabolism that confers tolerance to salinity stress in cucumber seedlings. Scientia Horticulturae, 2011, 4: 629-636.
[43]  Yang F, Xiao X W, Zhang S, et al. Salt stress responses in Populus cathayana Rehder. Plant Science, 2009, 176: 669-677.
[44]  Chavan P D, Karadge B A. Growth, mineral nutrition, organic constituents and rate of photosynthesis in Sesbania grandiflora L. grown under saline conditions. Plant and Soil, 1986, 93: 395-404.
[45]  陈托兄, 张金林, 陆妮, 等. 不同类型抗盐植物整株水平游离脯氨酸的分配. 草业学报, 2006, 15(1): 36-41.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133