Horie T, Schroeder J I. Sodium transporters in plants. Diverse genes and physiological functions. Plant Physiology, 2004, 136: 2457-2462.
[2]
王毅, 武维华. 植物钾营养高效分子遗传机制. 植物学报, 2009, 44(1): 27-36.
[3]
Ren Z H, Gao J P, Li L G, et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 2005, 37(10): 1141-1146.
[4]
Byrt C S, Platten J D, Spielmeyer W, et al. HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiology, 2007, 143: 1918-1928.
[5]
Plett D C, Mller I S. Na+ transport in glycophytic plants: what we know and would like to know. Plant Cell and Environment, 2010, 33(4): 612-626.
[6]
Hauser F, Horie T. A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell and Environment, 2010, 33(4): 552-565.
[7]
Liu W, Schachtman D P, Zhang W. Partial deletion of a loop region in the high affinity K+ transporter HKT1 changes ionic permeability leading to increased salt tolerance. Journal of Biological Chemistry, 2000, 275(36): 27924-27932.
[8]
Schachtman D P, Schroeder J I. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature, 1994, 370: 655-658.
[9]
Uozumi N, Kim E J, Rubio F, et al. The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiology, 2000, 122(4): 1249-1260.
[10]
Horie T, Yoshida K, Nakayama H, et al. Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant Journal, 2001, 27(2): 129-138.
[11]
Wang T B, Gassmann W, Rubio F, et al. Rapid up-regulation of HKT1, a high-affinity potassium transporter gene, in roots of barley and wheat following withdrawal of potassium. Plant Physiology, 1998, 118: 651-659.
Berthomieu P, Conéjéro G, Nublat A, et al. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO Journal, 2003, 22(9): 2004-2014.
Horie T, Costa A, Kim T H, et al. Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO Journal, 2007, 26: 3003-3014.
[16]
Wu Y, Hu Y, Xu G. Interactive effects of potassium and sodium on root growth and expression of K/Na transporter genes in rice. Plant Growth Regulation, 2009, 57(3): 271-280.
[17]
Haro R, Bauelos M A, Rodríguez-Navarro A. High-affinity sodium uptake in land plants. Plant and Cell Physiology, 2010, 51(1): 68-79.
Wang S M, Zhao G Q, Gao Y S, et al. Puccinellia tenuiflora exhibits stronger selectivity for K+ over Na+ than wheat. Journal of Plant Nutrition, 2004, 27: 1841-1857.
[22]
Wang C M, Zhang J L, Liu X S, et al. Puccinellia tenuiflora maintains a low Na+ level under salinity by limiting unidirectional Na+ influx resulting in a high selectivity for K+ over Na+. Plant Cell and Environment, 2009, 32: 486-496.
[23]
Durell S R, Hao Y, Nakamura T, et al. Evolutionary relationship between K+ channels and symporters. Biophysical Journal, 1999, 77(2): 775-788.
[24]
Kato Y, Sakaguchi M, Mori Y, et al. Evidence in support of a four transmembrane-pore-transmembrane topology model for the Arabidopsis thaliana Na+/K+ translocating AtHKT1 protein, a member of the superfamily of K+ transporters. Proceedings of the National Academy of Sciences USA, 2001, 98(11): 6488-6493.
Sunarpi, Horie T, Motoda J, et al. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant Journal, 2005, 44(6):928-938.
[27]
Haro R, Bauelos M A, Senn M E, et al. HKT1 mediates sodium uniport in roots. Pitfalls in the expression of HKT1 in yeast. Plant Physiology, 2005, 139: 1495-1506.
[28]
Flowers T J. Improving crop salt tolerance. Journal of Experimental Botany, 2004, 55: 307-319.
[29]
王遵亲, 祝寿泉, 俞仁培. 中国盐渍土. 北京: 科学出版社, 1993.
[30]
赵可夫, 李法曾. 中国盐生植物. 北京: 科学出版社, 1999.
[31]
Munns R. Comparative physiology of salt and water stress. Plant Cell and Environment, 2002, 25: 239-250.
[32]
Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681.
[33]
Zhang J L, Flowers T J, Wang S M. Mechanisms of sodium uptake by roots of higher plant. Plant and Soil, 2010, 326: 45-60.
Gassmann W, Rubio F, Schroeder J I. Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. Plant Journal, 1996, 10(5): 869-882.
[37]
Laurie S, Feeney K A, Maathuis F J, et al. A role for HKT1 in sodium uptake by wheat roots. Plant Journal, 2002, 32(2): 139-149.
[38]
Garciadeblás B, Senn M E, Bauelos M A, et al. Sodium transport and HKT transporters: the rice model. Plant Journal, 2003, 34(6): 788-801.
[39]
Golldack D, Su H, Quigley F, et al. Characterization of a HKT-type transporter in rice as a general alkali cation transporter. Plant Journal, 2002, 31(4): 529-542.
[40]
Jabnoune M, Espeout S, Mieulet D, et al. Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiology, 2009, 150: 1955-1971.
[41]
Mser P, Hosoo Y, Goshima S, et al. Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proceedings of the National Academy of Sciences USA, 2002, 99(9): 6428-6433.