全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
草业学报  2013 

小花碱茅HKT2;1基因全长cDNA的克隆与生物信息学分析

, PP. 140-149

Keywords: 小花碱茅,PutHKT2,1基因,克隆,生物信息学分析,耐盐性

Full-Text   Cite this paper   Add to My Lib

Abstract:

Na+是盐渍化土壤中主要的毒害离子,对植物生长发育和农业生产构成严重威胁。高亲和性K+转运蛋白HKT2;1在控制高等植物Na+吸收,增强K+的选择性,进而提高耐盐性方面发挥着重要作用。本研究以拒盐型牧草小花碱茅为材料,采用RT-PCR和RACE(rapidamplificationofcDNAends)方法克隆到HKT2;1基因,并命名为PutHKT2;1。该基因全长1919bp,包含1个长1638bp的开放阅读框(ORF),编码546个氨基酸,推测分子量为60.5kDa,等电点PI为9.07。与其他植物HKT2;1氨基酸序列同源性多在66%以上,核苷酸序列同源性都在75%以上。PutHKT2;1可能跨膜11次,二级结构分析表明,PutHKT2;1蛋白含有47.99%α-螺旋、5.13%β-转角、31.87%无规则卷曲和15.01%延伸链。PutHKT2;1基因全长cDNA的克隆及其生物信息学分析为进一步揭示小花碱茅拒盐的分子机制奠定了基础。

References

[1]  Horie T, Schroeder J I. Sodium transporters in plants. Diverse genes and physiological functions. Plant Physiology, 2004, 136: 2457-2462.
[2]  王毅, 武维华. 植物钾营养高效分子遗传机制. 植物学报, 2009, 44(1): 27-36.
[3]  Ren Z H, Gao J P, Li L G, et al. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics, 2005, 37(10): 1141-1146.
[4]  Byrt C S, Platten J D, Spielmeyer W, et al. HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiology, 2007, 143: 1918-1928.
[5]  Plett D C, Mller I S. Na+ transport in glycophytic plants: what we know and would like to know. Plant Cell and Environment, 2010, 33(4): 612-626.
[6]  Hauser F, Horie T. A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell and Environment, 2010, 33(4): 552-565.
[7]  Liu W, Schachtman D P, Zhang W. Partial deletion of a loop region in the high affinity K+ transporter HKT1 changes ionic permeability leading to increased salt tolerance. Journal of Biological Chemistry, 2000, 275(36): 27924-27932.
[8]  Schachtman D P, Schroeder J I. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature, 1994, 370: 655-658.
[9]  Uozumi N, Kim E J, Rubio F, et al. The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiology, 2000, 122(4): 1249-1260.
[10]  Horie T, Yoshida K, Nakayama H, et al. Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant Journal, 2001, 27(2): 129-138.
[11]  Wang T B, Gassmann W, Rubio F, et al. Rapid up-regulation of HKT1, a high-affinity potassium transporter gene, in roots of barley and wheat following withdrawal of potassium. Plant Physiology, 1998, 118: 651-659.
[12]  李剑, 赵常玉, 吴永娜, 等. 小花碱茅HKT1;4基因片段的克隆与序列分析. 草业科学, 2011, 28(6): 969-973.
[13]  Berthomieu P, Conéjéro G, Nublat A, et al. Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO Journal, 2003, 22(9): 2004-2014.
[14]  张宏飞, 王锁民. 高等植物Na+吸收、转运及细胞内Na+稳态平衡研究进展. 植物学通报, 2007, 24(5): 561-571.
[15]  Horie T, Costa A, Kim T H, et al. Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO Journal, 2007, 26: 3003-3014.
[16]  Wu Y, Hu Y, Xu G. Interactive effects of potassium and sodium on root growth and expression of K/Na transporter genes in rice. Plant Growth Regulation, 2009, 57(3): 271-280.
[17]  Haro R, Bauelos M A, Rodríguez-Navarro A. High-affinity sodium uptake in land plants. Plant and Cell Physiology, 2010, 51(1): 68-79.
[18]  任伟, 王志峰, 徐安凯. 碱茅耐盐碱基因克隆研究进展. 草业学报, 2010, 19(5): 260-266. 浏览
[19]  王锁民. 不同程度盐胁迫对碱茅离子吸收与分配的影响. 草地学报, 1996, 4(3): 186-193.
[20]  石德成, 殷立娟. 盐(NaCl)与碱(Na2CO3)对星星草胁迫作用的差异. 植物学报, 1993, 34(5): 144-149.
[21]  Wang S M, Zhao G Q, Gao Y S, et al. Puccinellia tenuiflora exhibits stronger selectivity for K+ over Na+ than wheat. Journal of Plant Nutrition, 2004, 27: 1841-1857.
[22]  Wang C M, Zhang J L, Liu X S, et al. Puccinellia tenuiflora maintains a low Na+ level under salinity by limiting unidirectional Na+ influx resulting in a high selectivity for K+ over Na+. Plant Cell and Environment, 2009, 32: 486-496.
[23]  Durell S R, Hao Y, Nakamura T, et al. Evolutionary relationship between K+ channels and symporters. Biophysical Journal, 1999, 77(2): 775-788.
[24]  Kato Y, Sakaguchi M, Mori Y, et al. Evidence in support of a four transmembrane-pore-transmembrane topology model for the Arabidopsis thaliana Na+/K+ translocating AtHKT1 protein, a member of the superfamily of K+ transporters. Proceedings of the National Academy of Sciences USA, 2001, 98(11): 6488-6493.
[25]  邵群, 丁同楼, 韩宁, 等. 高亲和K+转运蛋白(HKT)与植物抗盐性. 植物生理学通讯, 2006, 42(2): 175-181.
[26]  Sunarpi, Horie T, Motoda J, et al. Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant Journal, 2005, 44(6):928-938.
[27]  Haro R, Bauelos M A, Senn M E, et al. HKT1 mediates sodium uniport in roots. Pitfalls in the expression of HKT1 in yeast. Plant Physiology, 2005, 139: 1495-1506.
[28]  Flowers T J. Improving crop salt tolerance. Journal of Experimental Botany, 2004, 55: 307-319.
[29]  王遵亲, 祝寿泉, 俞仁培. 中国盐渍土. 北京: 科学出版社, 1993.
[30]  赵可夫, 李法曾. 中国盐生植物. 北京: 科学出版社, 1999.
[31]  Munns R. Comparative physiology of salt and water stress. Plant Cell and Environment, 2002, 25: 239-250.
[32]  Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008, 59: 651-681.
[33]  Zhang J L, Flowers T J, Wang S M. Mechanisms of sodium uptake by roots of higher plant. Plant and Soil, 2010, 326: 45-60.
[34]  康建军, 王锁民, 赵明, 等. 苗期施用钠复合肥增强梭梭抗逆性的初步研究. 草业学报, 2011, 20(2): 127-133. 浏览
[35]  马清, 楼洁琼, 王锁民. Na+对渗透胁迫下霸王幼苗光合特性的影响. 草业学报, 2010, 19(3): 198-203. 浏览
[36]  Gassmann W, Rubio F, Schroeder J I. Alkali cation selectivity of the wheat root high-affinity potassium transporter HKT1. Plant Journal, 1996, 10(5): 869-882.
[37]  Laurie S, Feeney K A, Maathuis F J, et al. A role for HKT1 in sodium uptake by wheat roots. Plant Journal, 2002, 32(2): 139-149.
[38]  Garciadeblás B, Senn M E, Bauelos M A, et al. Sodium transport and HKT transporters: the rice model. Plant Journal, 2003, 34(6): 788-801.
[39]  Golldack D, Su H, Quigley F, et al. Characterization of a HKT-type transporter in rice as a general alkali cation transporter. Plant Journal, 2002, 31(4): 529-542.
[40]  Jabnoune M, Espeout S, Mieulet D, et al. Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiology, 2009, 150: 1955-1971.
[41]  Mser P, Hosoo Y, Goshima S, et al. Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proceedings of the National Academy of Sciences USA, 2002, 99(9): 6428-6433.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133